Tesis doctoral presentada por Sara Torres Rusillo para optar al título de Doctora por la Universidad de Granada
I. INTRODUCCIÓN... 9

 1.1. Características del cáncer ... 12
 1.2. Quimioterapia y fármacos de elección ... 14
 1.3. Antimetabolitos. Inhibidores selectivos de cinasas: análogos de nucleósidos y nucleótidos ... 18

2. Apoptosis y cáncer .. 24
 2.1. Mecanismos de inducción de apoptosis ... 25
 2.2. Puntos de control y mecanismos de regulación. Implicación de la apoptosis en el cáncer. ... 28

3. Proteínas cinasas asociadas a muerte y apoptosis .. 30
 3.1. DAPK1 (Death-associated Protein Kinase 1) y proteínas relacionadas de la familia 31
 3.2. Características estructurales y localización subcelular de DAPK1 33
 3.3. Mecanismos intramoleculares de activación y regulación de DAPK1 37
 3.4. Participación de DAPK-1 en los procesos celulares 44
 3.5. Inducción de muerte celular vía activación de DAPK1. Principales sustratos. 46

4. DAPK1 y su implicación en cáncer ... 50
 4.1. Procesos de metilación de ADN. Patrones de metilación del promotor de DAPK1 50

II. OBJETIVOS .. 54

III. MATERIALES Y MÉTODOS .. 56

1. Líneas y cultivos celulares .. 57
2. Reactivos y anticuerpos ... 57
3. Preparación de los compuestos y tratamientos utilizados 58
4. Medida de la proliferación celular mediante MTT .. 58
5. Estudio del ciclo celular por citometría de flujo ... 59
6. Determinación de la apoptosis celular mediante Anexina –V FLUOS y iodo de propidio

7. Determinación del potencial de membrana mitocondrial y la producción de especies reactivas del oxígeno (ROS)

8. Inmunodetección de proteínas por Western blot

9. Ensayo enzimático in vitro basado en el P33

10. Tratamiento con el inhibidor de la metilación 5-azacitidina

IV. RESULTADOS

1. Diseño y síntesis de una colección de compuestos derivados de purinas

2. Los compuestos derivados de purinas muestran actividad antiproliferativa en líneas tumurales humanas

3. Los derivados de purinas inhiben la proliferación celular a través de la inducción de muerte por apoptosis

3.1. Los derivados de purinas inducen muerte celular en células leucémicas

3.2. Los compuestos derivados de purinas inducen muerte celular dependiente de cspasas

4. Síntesis y evaluación biológica de un nuevo compuesto derivado de purinas

4.1. Estudio del efecto del compuesto 6d en la proliferación y la viabilidad celular en células tumurales humanas

4.2. El compuesto 6d presenta un potente efecto inductor de muerte en células tumurales humanas

5. Estudio de los mecanismos inductores de muerte celular de los compuestos en células tumurales humanas

5.1. Los compuestos presentan mayor selectividad frente a líneas derivadas de tumores hematopoyéticos

5.2. Los linfocitos T primarios presentan mayor resistencia a la inducción de muerte celular tras el tratamiento con los compuestos derivados de purinas

5.3. Los compuestos análogos de purinas inducen apoptosis selectiva en células tumurales
5.4. La sobreexpresión de proteínas anti-apoptóticas Bcl-2 y Bcl-X protege a las células T tumorales de la apoptosis inducida por los compuestos derivados de purinas .. 81

5.5. Los compuestos inducen liberación de especies reactivas de oxígeno como resultado de la apoptosis en células T leucémicas ... 83

6. Los compuestos derivados de purinas inhiben la actividad catalítica de DAPK1 . 84

6.1. Identificación de las principales dianas de los compuestos derivados de purinas .. 84

6.2. Los derivados de purinas inducen apoptosis inhibiendo específicamente la autofosforilación de DAPK1 en células tumorales Jurkat 85

6.3. El tratamiento con inhibidores de la metilación restaura la expresión de proteína DAPK-1 y potencia el efecto inductor de apoptosis de los compuestos en células B tumorales .. 86

V. DISCUSIÓN .. 88

VI. CONCLUSIONS .. 99

VII. BIBLIOGRAFÍA .. 103
RESUMEN

Los derivados análogos de los nucleósidos son compuestos endógenos involucrados en muchos procesos biológicos, destacando las purinas como pequeñas moléculas heterocíclicas que van a inhibir a multitud de cinasas implicadas en rutas de proliferación y muerte celular.

En la compleja red formada por estas vías de señalización celular, las proteínas cinasas constituyen la clase más importante de diana terapéutica debido al papel central que ocupan en estas vías. La vasta mayoría de estas dianas están siendo investigadas para el tratamiento del cáncer, pero la función cinasa está también desregulada en otros desordenes inmunológicos, neurológicos, metabólicos e infecciosos, lo que ha generado un considerable interés en desarrollar pequeñas moléculas inhibidoras de cinasas para el tratamiento de dichos desordenes.

Así, las librerías de purinas con distintos sustituyentes se han convertido en una herramienta atractiva no sólo para el desarrollo de nuevos fármacos antitumorales sino para esclarecer las rutas moleculares implicadas en el cáncer.

Este trabajo aborda el estudio de una colección de 18 compuestos derivados de purinas poli-sustituidas sintetizados a partir de una novedosa ruta en un sólo paso partiendo de 4-alquilamino-5-amino-6-cloropirimidinas, alcóxidos primarios y \(N,N\)-dimetilformamida o bien \(N,N\)-dimetilacetamida, que va a estar controlada por el tamaño de la amida.

El análisis del efecto de los compuestos derivados de purinas en líneas tumorales Jurkat y K562 ha revelado una importante actividad antiproliferativa para los compuestos 5e, 6a y 6d, que indujeron muerte celular por apoptosis de forma dependiente de caspasas, como mostró la activación de las caspasas iniciadoras 8 y 9.

Los cuatro compuestos presentaron un efecto reducido cuando se trataron líneas tumorales que sobreexpresaban las proteínas antiapoptóticas Bcl-2 y Bcl-x, los que indic
El ensayo enzimático in vitro reveló que los compuestos están actuando de forma específica sobre la proteína asociada a muerte DAPK1, una Serina/treonina cinasa definida como un importante supresor tumoral. Así, mostramos que nuestros compuestos están inhibiendo la actividad catalítica y por tanto el mecanismo de autoinhibición de DAPK1, generando una enzima defosforilada y activa que va incrementar la muerte de células tumorales por inducción de apoptosis.

Por tanto, nuestros compuestos serían los primeros inhibidores específicos de la actividad enzimática de la proteína inductora de muerte DAPK1, lo que representa un avance sustancial para abordar en el futuro no sólo nuevas estrategias de terapia antitumoral, sino el estudio de la propia proteína y de todos los procesos en los que participa, que pueden ayudar a comprender mejor el complejo proceso tumoral.
I. INTRODUCCIÓN

El Cáncer es en la actualidad un problema de salud pública global en el que confluyen las más diversas especialidades biomédicas, siendo la primera de todas ellas la Historia de la Medicina, que muestra los esfuerzos realizados desde hace siglos para identificar y conocer el origen del cáncer, no sólo desde una perspectiva fisiopatológica sino también como una enfermedad que surge paralela a la evolución humana (Salaverry, 2013).

La paleopatología muestra evidencias de lesiones compatibles con el cáncer en humanos desde hace unos 150000 años (Halperin, 2004), aunque aparece como una enfermedad poco frecuente atribuida a fuerzas sobrenaturales, sin relación con traumatismos o causas identificables. Ya en las primeras civilizaciones existen documentos que relacionan el cáncer con casos de lesiones ulcerosas, como ocurre en los llamados “Papiros médicos” egipcios. Aunque deberemos esperar algunos milenios después, hasta el siglo IV a.C, para encontrar no sólo las primeras descripciones sino también el origen etimológico de la palabra Cáncer, siendo Hipócrates, conocido como “el padre de la medicina”, en su “Corpus Hippocraticum”, donde menciona unas “lesiones ulcerosas crónicas, algunas veces endurecidas, que se desarrollan progresivamente y sin control, expandiéndose por los tejidos asemejando a las patas de un cangrejo”, lo que le lleva a la denominación de karkinos, palabra griega que significa cangrejo. De ahí el término del latín “cancer” (sin acento), referente tanto al animal como a la enfermedad, que siglos después se consolidará como “cáncer” (con tilde), exclusivamente como término médico para un tipo determinado de lesión (KEIL, 1950; Salaverry, 2013). Otros términos relacionados, como “oncos”, que en griego significa hinchazón, fue en principio utilizado simplemente para describir el edema, aunque luego en latín se traduciría como “tumor”, incluido como uno de los cinco signos de la inflamación según Celso (25 a.C-50 d.C) (KEIL, 1950).

Pero será el siglo XVIII el que inicie un movimiento naturalista y experimental en la medicina, que llevará a la identificación de las lesiones cancerosas bien diferenciadas bajo el término “cáncer”. Surgirán así una serie de “teorías modernas” que asentarán las bases actuales de la enfermedad (Salaverry, 2013): Rudolph Virchow “toda célula deriva de otra célula y por tanto las células cancerosas deben derivar de otras células”;

11
Johannes Muller (revisado por Salaverry, 2013), observa el carácter desordenado de las células cancerosas; Henri Francois Le Dran, describe la diseminación por los gánglios linfáticos y la circulación general; Peyton Rous, aísla el sarcoma en el pollo y lo trasplanta a otros animales iniciando la teoría del origen viral del cáncer (ROUS, 1911); Dennis Burkitt, encuentra en África central un linfoma que sólo existe en ciertos climas (BURKITT and O’CONOR, 1961); etc.

En la actualidad el cáncer se ha convertido en una de las primeras causas de muerte y la Organización Mundial de la Salud (OMS) cifra en 8.2 millones el número de fallecidos en 2012 (tomado de la página web http://www.who.int/). Así, en las últimas décadas ha surgido la necesidad de abordar una investigación que mejore nuestro entendimiento acerca del complejo proceso que subyace a la iniciación del cáncer, progresión y metástasis (Grizzi et al., 2006).

1.1. Características del cáncer

A comienzos del año 2000, Hanahan y Weinberg propusieron lo que se conoce actualmente como “las características del cáncer” (The hallmarks of cancer”), es decir, las seis alteraciones esenciales en la fisiología celular que dictan el crecimiento maligno y que van a ser comunes a los más de 100 tipos distintos de cánceres descritos hasta el momento: señales de proliferación mantenidas, resistencia a las señales de inhibición del crecimiento, evasión de la muerte celular programada (apoptosis), potencial de replicación ilimitado, capacidad proangiogénica e invasión y metástasis de tejidos (Figura 1) (Hanahan and Weinberg, 2000).

![Figura 1. Las características del cáncer](Tomado de Hanahan and Weinberg, 2011).
Una década después, se redefinieron estas características, incluyendo ya nuevos aspectos fundamentales como la constitución e interacción de señales en el microambiente tumoral cruciales en los distintos fenotipos del cáncer y que se detallan a continuación (Hanahan and Weinberg, 2011):

- **Señales de proliferación mantenidas**: el rasgo principal que a va caracterizar a las células cancerígenas es su capacidad para mantener un estado de proliferación crónico. En un tejido normal, el control de la producción y liberación de señales de crecimiento y la progresión a través del ciclo aseguran la homeostasis y el mantenimiento de la arquitectura normal del tejido. Las células tumorales presentan alteradas estas vías de señalización, produciendo sus propios ligandos frente a factores de crecimiento, resultando en una estimulación proliferativa autocrina (Bhowmick et al., 2004; Cheng et al., 2008).

- **Resistencia a las señales de inhibición del crecimiento**: las células tumorales han desarrollado mecanismos para evadir a los principales reguladores de la proliferación celular, los genes supresores de tumores, que operan como puntos de control en la división celular, decidiendo entre la progresión de una célula en el ciclo o la inducción de senescencia o apoptosis (Hanahan and Weinberg, 2011).

- **Evasión de la muerte celular programada (apoptosis)**: la muerte celular programada sirve como una barrera natural frente al desarrollo del cáncer y está desencadenada en respuesta a diversos tipos de estrés fisiológicos que las células tumorales experimentan durante el proceso de tumorogénesis o como resultado de la terapia antitumoral (Hanahan and Weinberg, 2011). De hecho, la apoptosis está atenuada en aquellos tumores que presentan una alto grado de malignidad o resistencia a la terapia (Adams and Cory, 2007).

- **Potencial de replicación ilimitado**: las células cancerígenas requieren un potencial replicativo ilimitado en orden a generar los tumores macroscópicos. Esta capacidad es contraria a una célula normal, que se ve limitada a un número exacto de divisiones, lo que se asocia a dos barreras distintas: la senescencia, que conlleva la entrada irreversible en un estado no proliferativo, y la crisis o muerte celular. En raras ocasiones las células emergen de una
población en crisis y exhiben un potencial replicativo ilimitado, transición a la que se le ha denominado inmortalización (Hanahan and Weinberg, 2011).

- **Capacidad proangiogénica:** al igual que en los tejidos normales, los tumores requieren el mantenimiento de los nutrientes y aporte de oxígeno así como de la capacidad de eliminar residuos y CO_2_, lo que va a implicar la formación de nuevos vasos por el proceso de angiogénesis. Durante la progresión del tumor este proceso es muy activo y va a ayudar a la expansión del crecimiento neoplásico (Hanahan and Folkman, 1996).

- **Invasión y metástasis de tejidos:** se han asociado a la adhesión celular y a la matriz extracelular (Cavallaro and Christofori, 2004). La progresión tumoral puede ser descrita como una sucesión de expansiones clonales, cada una de las cuales está dirigida por la adquisición de un genotipo mutante útil (Berdasco and Esteller, 2010).

Así, todas las características descritas se desarrollan a partir de dos eventos fundamentales: la inestabilidad genómica en las células cancerígenas, que genera mutaciones al azar que incluyen reordenamientos cromosómicos que van a dar lugar a las características definitorias del proceso; y un segundo evento que involucra el estado inflamatorio de las lesiones premalignas y malignas, dirigido por el sistema inmunitario y que en ciertas ocasiones va a promover la progresión tumoral (Hanahan and Weinberg, 2011).

1.2. Quimioterapia y fármacos de elección

La definición de todos los principios característicos del cáncer ha supuesto el comienzo del desarrollo terapéutico actual, pudiendo categorizarse de acuerdo a los efectos causados en una o más de estas características. Así, las dianas más importantes sobre las que van a diseñarse la mayoría de los quimioterápicos actuales están basados en rutas de proliferación (EGFR, EGF), mecanismos pro y anti apoptóticos (inhibidores de PARP) o mecanismos de reparación del ADN (inhibidores de telomerasas, inhibidores de ciclinas) (Figura 2) (Hanahan and Weinberg, 2011).
El objetivo principal de la quimioterapia hasta el momento ha sido la destrucción de las células que se están replicando de forma activa mediante diferentes mecanismos como la alteración de procesos metabólicos del ADN, del ARN y de la síntesis proteica, principalmente. Debido a esta acción general de los quimioterápicos, se ocasiona la muerte de aquellas células sanas con un alto índice de proliferación, como son los epitelios, folículos pilosos, células hematopoyéticas, etc (Mihlon et al., 2010). Además, un problema asociado es el hecho de que gran parte de las vías que operan en el proceso tumoral estén interconectadas formando una extensa red de señalización, lo que explica que muchos agentes terapéuticos actuales inhiban una vía pero no el fenotipo tumoral completo. Es por ello que a menudo los tratamientos aplicados a pacientes incluyen asociaciones de agentes quimioterápicos.

Existen varios principios importantes que debemos conocer para comprender mejor la quimioterapia actual: la fracción de células que se están dividiendo de forma activa en un tumor se conoce como fracción de crecimiento y sobre esta porción celular van a ejercer sus efectos los agentes quimioterápicos. Por tanto, la fracción de crecimiento dictará qué proporción del tumor es susceptible a una dosis dada de quimioterapia, existiendo una relación inversa entre el número inicial de células o masa tumoral y la curabilidad (Mihlon et al., 2010). Otro principio es el uso de regímenes combinados, que son importantes por dos motivos: el sinergismo, dado que dos agentes pueden actuar en distinta fase del ciclo celular, y la resistencia, pues los tumores
presentan una alta tasa de mutabilidad, pudiendo desarrollar resistencia a los fármacos utilizados (Mihlon et al., 2010).

A la hora de considerar el uso de un determinado fármaco y decidir la dosis y la ruta de administración es necesario definir dos conceptos; la farmacocinética, que hace referencia a la absorción, distribución, metabolismo y eliminación del fármaco; y la farmacodinámica, que alude al mecanismo de acción del fármaco y la relación entre la concentración y el efecto causado (Mihlon et al., 2010). Este último concepto debe ser el objetivo principal y primario cuando se diseñan nuevos fármacos.

En base a estos principios, en la actualidad se cuenta con gran cantidad de agentes terapéuticos con diferente perfil de toxicidad y distinto mecanismo, lo que ha permitido alterar gran parte del curso natural de un proceso neoplásico e incluso llegar a convertir algunos de ellos en enfermedades crónicas. La siguiente tabla resume los principales agentes utilizados actualmente en quimioterapia, incluyendo el grupo farmacológico al que pertenecen y su mecanismo de acción (Tabla 1).

Muchos de estos fármacos tienen unas propiedades farmacológicas poco ideales, como son la baja solubilidad en agua, naturaleza irritante, alta inestabilidad, rápida metabolización y distribución no selectiva. Estas propiedades pueden llevar a consecuencias adversas severas, incluyendo actividad terapéutica subóptima, efectos secundarios dosis-dependientes y baja calidad de vida del paciente (Iwamoto, 2013). Durante los últimos años, los esfuerzos por entender las bases moleculares del cáncer y la necesidad de desarrollar nuevos compuestos han llevado a la aparición de la química combinatoria, que surge a mediados de los años 80 como respuesta a la gran demanda de nuevos compuestos planteada por la industria farmacéutica, generada por el descubrimiento de un número elevado de nuevas dianas terapéuticas, gracias a los avances en el campo de la biología molecular y a la automatización de los ensayos para la detección de compuestos con propiedades terapéuticas (Gallop et al., 1994).
<table>
<thead>
<tr>
<th>GRUPO</th>
<th>AGENTE USADO EN TERAPIA</th>
<th>MECANISMO DE ACCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agentes alquilantes</td>
<td>Nitrógeno. Mortizuro oncotérpico (ciclofosfamida)</td>
<td>Agentes intercalantes en el DNA, alterando la replicación y la transcripción</td>
</tr>
<tr>
<td>Compuestos de platino</td>
<td>Cisplatino. Carboplavino</td>
<td>Unión covalente al ADN y las proteínas nucleares</td>
</tr>
<tr>
<td>Antimetabolitos</td>
<td>Análogos de pirimidinas (cituridina, 5-fluorouracilo). Análogos de purinas (fludarabina, 6-mercaptopurina). Metotrexato</td>
<td>Interfieren en el metabolismo celular como falsos nutrimentos</td>
</tr>
<tr>
<td>Alcaloides vegetales</td>
<td>Alcaloides de la vinca (vincristina, vinblastina). Taxanos (paclitaxel).</td>
<td>Inhiben formación y polimerización de microtúbulos</td>
</tr>
<tr>
<td>Inhibidores de la topoímerasa</td>
<td>Epipodoflioxinas (etopósido). Anticelulares (doxorubicina).</td>
<td>Inhiben las topoímeras, enzimas reparadoras del ADN</td>
</tr>
<tr>
<td>Antibióticos antitumorales</td>
<td>Bleomicina. Mitomicina C.</td>
<td>Inhiben la síntesis de ADN y ARN y provocan roturas de éstos</td>
</tr>
<tr>
<td>Agentes biológicos</td>
<td>Citocinas inmunoreguladoras (IFN-γ, anticuerpos monoclonales (rituximab). IL-2 recombinante). Inhibidores de kinases (eritromicina). Inhibidores de mTOR (tensirolizina).</td>
<td>Inhiben receptores de membrana, bloquean ligandos, inhiben cascadas de señalización; estimulan la citotoxicidad e inhiben el ciclo celular</td>
</tr>
</tbody>
</table>

Tabla 1. Principales agentes quimioterapéuticos utilizados actualmente y su mecanismo de acción. Resumen de (Mihlon et al., 2010).

La aplicación de estas tecnologías combinatorias ha llevado a la creación de librerías de compuestos químicos pequeños análogos de metabolitos celulares con propiedades farmacológicas y a su vez ha permitido identificar nuevas dianas moleculares que podrían ser específicamente alteradas en las células cancerígenas, lo que permitiría desarrollar dichos fármacos frente a su diana específica, presente sólo en las células tumorales (She and Hao, 2013).
1.3. Antimetabolitos. Inhibidores selectivos de cinasas: análogos de nucleósidos y nucleótidos.

En la compleja red formada por todas las vías de señalización celular, las proteínas cinasas constituyen la clase más importante de diana terapéutica debido al papel central que ocupan en estas vías, con aproximadamente 30 cinasas distintas que están siendo analizadas en ensayos clínicos en fase I. La vasta mayoría de estas dianas están siendo investigadas para el tratamiento del cáncer, pero la función cinasa está también desregulada en otros desordenes inmunológicos, neurológicos, metabólicos e infecciosos, lo que ha generado un considerable interés en desarrollar pequeñas moléculas inhibidoras de cinasas para el tratamiento de dichos desordenes (Zhang et al., 2009).

Las proteínas cinasas están definidas por su capacidad para catalizar la transferencia del fosfato terminal del ATP a sustratos que normalmente contienen residuos de serina, treonina o tirosina (Figura 3). Estos residuos comparten una estructura secundaria conservada constituida por una hendidura o región bisagra que va a albergar el sitio de unión del ATP, de forma que el anillo de ribosa se unirá a través de enlaces de hidrógeno a la región bisagra, conectando los dominios cinasa amino y carboxilo terminales. Todas estas enzimas tienen un lazo de activación conservado que es importante en el mecanismo de regulación y que está marcado por los motivos DFG y APE (aspártico-fenilalanina-glicina y alanina-prolina-glutámico) al comienzo y al final, respectivamente. La activación de este lazo puede adoptar un gran número de conformaciones catalíticas que van a ser dependientes de que el lazo de activación esté bloqueando el sitio de unión del sustrato o no (Liu and Gray, 2006).

La actual relevancia de estas enzimas como dianas para fármacos es debida a varios factores. Primero, existen unas 518 cinasas codificadas por el genoma humano y todos los procesos de transducción de señales están dirigidos a través de cascadas de fosfotransferencia, lo que sugiere que la inhibición de la actividad cinasa puede provocar una respuesta fisiológica real. Segundo, a pesar del alto grado de conservación del sitio de unión del ATP, se pueden desarrollar moléculas pequeñas altamente selectivas con propiedades farmacológicas favorables. Y tercero, la inhibición de la actividad cinasa en las células normales a veces puede ser tolerante, presentando una ventana terapéutica para la muerte selectiva de células tumorales. Sin embargo, a pesar de estos
prometedores factores, se deben afrontar cambios significativos respecto a la resistencia a los fármacos, la carencia de inhibidores selectivos, la falta de eficacia de los actuales y dificultad en la validación de la diana concreta de un fármaco para una enfermedad en particular (Zhang et al., 2009). En este momento, conocer la selectividad de estos inhibidores de cinasas por sus dianas es imprescindible para predecir e interpretar los efectos que pueden causar tanto a nivel clínico, como de investigación (Anastassiadis et al., 2011).

1.3.1. Sitios de unión de los inhibidores de cinasas. Tipos de inhibidores.

La mayoría de los inhibidores de cinasas descubiertos hasta la fecha son competidores con el ATP y presentan de uno a tres enlaces de hidrógeno que se unen a los aminoácidos localizados en la región bisagra de la enzima sobre la que van a actuar (Figura 3), mimetizando los enlaces de hidrógeno que normalmente están presentes en el anillo de ribosa del ATP (Liu and Gray, 2006; Traxler and Furet, 1999).

- **Inhibidores Tipo I.** Constituyen la mayoría de inhibidores competitivos del ATP y reconocen los llamados sitios de conformación activa de la cinasa (Liu and Gray, 2006). La región ocupada por estos inhibidores puede dividirse en cuatro subregiones: las regiones hidrofóbicas I y II, la región adenina, la región ribosa y la región de unión al fosfato. Aunque la región adenina va a ser ocupada de forma invariable, la capacidad del inhibidor para ocupar el resto de regiones va a determinar su selectividad (revisado por (Liu and Gray, 2006)). Ejemplos en uso clínico actualmente son los inhibidores sorafenib y dasatinib, que actúan sobre los receptores PDGFR y VEGFR, y la familia de cinasas Src, respectivamente.

- **Inhibidores Tipo 2.** Son aquellos que reconocen la conformación inactiva de la cinasa, referida a veces como reordenamiento del motivo DFG, que expone un sitio hidrofóbico adicional adyacente al sitio de unión del ATP (Liu and Gray, 2006). El imatinib se une con una conformación tipo 2 al receptor PDGFR (Zhang et al., 2009).

- **Inhibidores alostéricos.** Son compuestos que se unen fuera del sitio de unión del ATP y modulan la actividad cinasa de una forma alostérica. Estos inhibidores tienden a exhibir el mayor grado de selectividad cinasa debido a que aprovechan los sitios de unión y los mecanismos reguladores que son únicos en ella (Zhang et al., 2009). A este grupo pertenece el inhibidor de IKK (inhibitor of nuclear factor-κB, BMS-345541) (McIntyre et al., 2003).
- **Inhibidores covalentes.** La cuarta clase de inhibidores de cinasas son capaces de formar una unión covalente e irreversible con el sitio activo del enzima, la mayoría por una reacción con el residuo nucleofílico de cisteína (Cohen et al., 2005); (Kwak et al., 2005). El inhibidor irreversible más avanzado es el inhibidor del receptor del factor de crecimiento epidérmico o EGFR, HKI-272 (Kobayashi et al., 2005).

![Figura 3. Esquema representativo del equilibrio entre las conformaciones activa, inactiva, apo, tipo I y tipo II de la cinasa y su ligando. Tomado de (Liu and Gray, 2006).](image)

Los avances tecnológicos han permitido desarrollar métodos para describir la unión de pequeñas moléculas a cinasas de forma selectiva. Las técnicas combinatorias como el cribado de alto rendimiento o *High-throughput Screening*, las librerías de compuestos basadas en la síntesis de análogos, el diseño estructural dirigido o las estrategias de ensamblaje basadas en fragmentos, etc, han permitido descubrir un gran número de moléculas pequeñas inhibidoras específicas frente a una cinasa de interés (Zhang et al., 2009).

El grupo de P.R. Peterson realizó en 2011 un ensayo enzimático de alto rendimiento para testar la selectividad de un gran número de inhibidores de cinasas utilizando un panel de 300 proteínas humanas recombinantes y 178 inhibidores conocidos de estas. El resultado mostró un patrón variado de enzimas que son inhibidas comúnmente por muchos compuestos y otras cinasas que son resistentes a la inhibición
por pequeñas moléculas e inhibidores erróneamente utilizados (Anastassiadis et al., 2011).

A pesar del gran avance que ha supuesto el cribado de alta resolución, sólo una pequeña fracción del quinoma puede ser actualmente objetivo de un inhibidor potente y selectivo, lo que lleva a la necesidad de desarrollar estrategias para descubrir y optimizar nuevos inhibidores de forma más eficiente. Los nuevos ligandos que actúan sobre el sitio de unión del ATP son desarrollados usando una combinación de métodos que incluyen la síntesis análoga, el diseño informado de estructura y las estrategias de ensamblaje basadas en fragmentos (Zhang et al., 2009).

- **Síntesis análoga.** La identificación de nuevos inhibidores para una diana cinasa concreta a veces comienza con un cribado de los inhibidores que se han desarrollado previamente. Así, los análogos se inician con un modelo conductor que se identificó como inhibidor que podía reaccionar con otra nueva enzima de interés. Los análogos incluyen quinazolonas, pirimidinas, purinas, imidazoles, pirazoles, oxindoles y quinolonas, todos ellos modificados mediante sustituciones isostéricas para mejorar la potencia, selectividad y propiedades farmacológicas preservando las propiedades responsables de la unión a la cinasa (Figura 4) (Zhang et al., 2009).

- **Diseño de estructura informada.** Es utilizada para facilitar el descubrimiento y la optimización de un inhibidor. Quizás el uso más frecuente sea determinar las interacciones clave entre el inhibidor y el sitio activo del enzima. Alternativamente puede ser utilizado para diseñar compuestos híbridos, en los que la porción de un inhibidor es ensamblada a la de otro (Liu and Gray, 2006).

- **Inhibidores a base de fragmentos.** Involucra la identificación de fracciones que se unen a diferentes porciones del sitio activo de la cinasa de acción, seguido por la unión de estas fracciones para crear un nuevo inhibidor (Gill, 2004). Los fragmentos que se unen al sitio de interés normalmente se originan en una librería y pueden ser seleccionados usando resonancia magnética nuclear o cristalográfia. Un ejemplo de cribado a base de fragmentos es el descubrimiento del inhibidor CDK2, AT7519, estructuralmente distinto de los conocidos inhibidores de CDK2 (Wyatt et al., 2008).

1.3.2. Análogos de nucleósidos y nucleótidos

En la actualidad, el uso de las proteínas cinasas como dianas de acción de pequeñas moléculas no sólo se está convirtiendo en una herramienta atractiva para el
desarrollo de nuevos fármacos antitumorales sino para esclarecer las rutas moleculares implicadas en el cáncer (Xi et al., 2013). De hecho, alrededor de unas diez moléculas pequeñas inhibidoras de cinasas han sido aprobadas durante los últimos cinco años por la FDA (US Food and Drug Administration) para su uso como fármacos antitumorales en humanos (Jordheim et al., 2013).

Dentro de las rutas de señalización en eucariotas la fosforilación post-traduccional es un evento clave y entender el papel individual que cada cinasa tiene dentro del proceso, ha sido complicado debido en parte a la carencia de inhibidores realmente selectivos. Además, la mayoría de estas enzimas son proteínas multidominio donde cada dominio tiene una función independiente. En este sentido, la ventaja que presentan las moléculas pequeñas es que pueden inhibir la actividad catalítica del enzima sin perturbar los otros dominios (Brandvold et al., 2012).

Entre los inhibidores actuales de cinasas destacan los compuestos modificados o análogos de nucleótidos o nucleósidos, que son pequeñas moléculas heterocíclicas derivadas de los nucleósidos deoxicitidina, deoxiadenosina y deoxiguanosina y modificadas químicamente (Figura 4), que van a mostrar una relación estructura-actividad, actuando como antimetabolitos y mimetizando a sus análogos fisiológicos, como el ATP (Jordheim et al., 2013).

Figura 4. Estructura general y modificaciones químicas de los análogos de nucleósidos y nucleótidos. Consisten en una nucleobase (purina o pirimidina) unida a un azúcar y/o a un grupo fosfato modificados mediante reacciones de halogenación, azotación, adición de anillos aromáticos, oxigenación o nitrogenación, etc. (Jordheim et al., 2013).

Desde 1969, con la aprobación del uso de la citarabina por la FDA, para el tratamiento de la leucemia mieloide aguda, se han sintetizado y evaluado en pacientes con cáncer numerosos análogos de nucleósidos. Hasta el momento, hay seis análogos citotóxicos aprobados tanto por la FDA como por la EMA (European Medicines Agency),
utilizados como agentes antiproliferativos, inmunosupresores, inhibidores de fosfodiesterasas, moduladores epigenéticos y cardio-neuro protectores (Jordheim et al., 2013).

El mecanismo exacto por el que estos análogos de nucleósidos inducen apoptosis en células cancerígenas aún no está claro, pero las purinas están involucradas en un gran número de procesos biológicos y por tanto sus análogos sintéticos van a explotar las mismas vías metabólicas que los nucleósidos endógenos (Jordheim et al., 2013). Muchos de estos agentes van a ejercer sus efectos citotóxicos por interrupción de la síntesis normal de ADN a través de la incorporación directa en la extensión de la cadena de ácido nucleico o por desestabilización del balance de deoxinucleótidos. Otros análogos pueden directamente iniciar apoptosis por activación del apoptosoma o revertir el silenciamiento génico causado por procesos de metilación (Ewald et al., 2008). Posiblemente, un mecanismo común de acción a todos los inhibidores de cinasas sea a través de la unión competitiva en el sitio de reconocimiento del ATP, altamente conservado, lo que provoca el cambio conformacional y el paso de enzima activa (tipo 1) a inactiva (tipo2) o viceversa, inhibiendo o activando así su actividad catalítica y el proceso de reversibilidad (Brandvold et al., 2012); (Ewald et al., 2008; Zhang et al., 2009).

Existen gran cantidad de librerías de pequeñas moléculas frente a un alto número de proteínas cinasas implicadas en las rutas de señalización, muchas de ellas utilizadas en clínica (Knight and Shokat, 2005), como por ejemplo derivados de purinas selectivos frente a la tirosina cinasa c-SRC , definida como el primer proto-oncogen identificado en procesos tumorales e implicada en muchos procesos fisiológicos (Brandvold et al., 2012); (Huang et al., 2010); o la GSK-3 (glicógeno sintasa cinasa-3), implicada en las rutas de supervivencia celular (Cross et al., 2001); (Ibrahim et al., 2010).

Se estima que las investigaciones sobre inhibidores de cinasas para desarrollar nuevos fármacos comprenden actualmente más de un 30% de los programas de I+D de la industria farmacéutica en su conjunto (Knight and Shokat, 2005) y las librerías de purinas con diferentes sustituyentes se espera que tengan un alto rendimiento como compuestos bioactivos e inhibidores selectivos de cinasas en un futuro próximo (Huang et al., 2010). Por tanto, el presente y futuro en este nuevo y prometedor campo requerirá de la colaboración interdisciplinaria entre Química, Biología, Química
2. Apoptosis y cáncer

El proceso de muerte celular es fundamental para el desarrollo normal y el mantenimiento de la multicelularidad del organismo. Un patrón anormal de muerte, causado por pérdida o ganancia de la funcionalidad de genes asociados a muerte celular se va a correlacionar con la aparición de diferentes condiciones patológicas, como desórdenes neurodegenerativos, enfermedades linfoproliferativas y cáncer (Kissil et al., 1997).

La muerte celular programada (Programed Cell Death o PCD) es definida como la muerte de una célula en cualquier condición patológica cuando media un programa intracelular (Ouyang et al., 2012). Ésta hace referencia a tres tipos principales de muerte: apoptosis, autofagia y necrosis.

La apoptosis o PCD tipo I fue descrita por Kerr y col. (Kerr et al., 1972) y está caracterizada por una serie de cambios bioquímicos y morfológicos que incluyen reducción del tamaño celular, condensación y fragmentación nuclear, formación de vesículas de membrana y pérdida de adhesión con las células vecinas y la matriz extracelular. Los cambios bioquímicos comprenden rotura del ADN cromosómico en fragmentos intranucleosomales, externalización de fosfatidilserina y rotura de otros sustratos intracelulares por proteólisis específica. Numerosos estudios han mostrado que la desregulación de este proceso conduce a la aparición de cáncer, indicando la estrecha relación entre ambos (revisado por (Ouyang et al., 2012).

La autofagia o PCD tipo II es un proceso catabólico muy conservado en la evolución que comienza con la formación de autofagosomas, estructuras de doble membrana que envuelven macromoléculas citoplasmáticas y organelas destinadas a su reciclaje. La autofagia juega un papel fundamental en la homeostasis celular y la supervivencia, aunque también puede comprometerse con diferentes formas de necrosis y apoptosis cuando el estrés celular es excesivo (revisado por (Ouyang et al., 2012). Debido a su doble participación, se le ha atribuido un papel tanto supresor como potenciador tumoral (Kundu and Thompson, 2008).
La necrosis o PCD tipo III involucra un aumento del tamaño celular, disfunción de las organelas y lisis celular. Este mecanismo ha sido siempre considerado como una muerte accidental o no controlada, pero tras el conocimiento de sus mediadores, el concepto de necrosis programada ha sido recientemente aceptado (revisado por Ouyang et al., 2012). Aunque la célula que muere por necrosis libera su contenido citoplasmático al medio extracelular provocando una respuesta inflamatoria y promoviendo el crecimiento tumoral, también se está investigando su posible utilización como estrategia anti tumoral (Agostinis et al., 2004; Zong et al., 2004).

Así, apoptosis, autofagia y necrosis programada tienen distintas características morfológicas y diferentes procesos fisiológicos, pero existe una intrínseca relación entre ellas. Bajo ciertas circunstancias, apoptosis y autofagia ejercen efectos sinérgicos, mientras que en otras situaciones la autfagia actúa sólo cuando se ha iniciado la apoptosis (Gonzalez-Polo et al., 2005). Incluso apoptosis y necrosis programada pueden ser inducidas simultáneamente y estar relacionada con el desarrollo de distintos cánceres (Zong et al., 2004).

2.1. Mecanismos de inducción de apoptosis

La apoptosis es el principal tipo de PCD que ocurre cuando el daño al ADN es irreparable. Denominada también apoptosis dependiente de caspasas, está finamente regulada e implica múltiples factores. Entre ellos, las caspasas tienen el papel principal en el mecanismo apoptótico. Son proteasas específicas de aspartato y dependientes de cisteína codificadas por once genes distintos (Li and Yuan, 2008; Sankari et al., 2012) y van a activar tres vías: la vía extrínseca o dependiente de receptores de muerte, la vía intrínseca o mitocondrial y la recientemente nombrada vía intrínseca del retículo endoplasmático (Sankari et al., 2012).

2.1.1. Vía extrínseca o dependiente de receptores de muerte

La vía extrínseca está regulada por los denominados receptores de muerte, que son receptores transmembrana que transmiten señales apoptóticas tras la unión con su ligando. Principalmente son miembros de la superfamilia del receptor del factor de necrosis tumoral, TNFR1, FAS (DR2, CD95 o Apo1), DR3 (Death Receptor 3), TRAIL-R1/2 (DR4/5) y DR6, por lo que poseen una región intracitoplasmática o dominio de muerte (DD), que al unirse a su ligando va a reclutar moléculas adaptadoras formando el
complejo de señalización de inducción de muerte o DISCs. TNFR reclutará a TRADD y el receptor Fas a FADD (Fas-associated death domain), de forma que ambos reclutan a la pro-caspasa 8, caspasa iniciadora que va a activarse de forma autocatalítica, marcando el inicio de la apoptosis. En las células tipo I, esta señal es suficiente para activar la ruta que incluirá a las caspasas 3 y 7 y que culminará con la muerte celular. En las células tipo II, es requerida la mitocondria, de forma que la caspasa 8 produce la rotura de Bid, una proteína pro-apoptótica miembro de la familia de Bcl-2, que se translocará a la mitocondria, dónde activará la ruta mitocondrial o ruta intrínseca (Figura 5) (revisado por Li and Yuan, 2008).

2.1.2. Vía intrínseca o mitocondrial

Factores como daño al ADN, hipoxia, alta concentración de iones Ca$^{2+}$, estrés oxidativo o drogas citotóxicas van a iniciar la ruta mitocondrial, resultando en un incremento de su permeabilidad y en la liberación del citocromo c. Esta vía será iniciada por proteínas de la familia de Bcl-2, pro-apoptóticas (Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim y Hrk) y anti-apoptóticas (Bcl-2, Bcl-XL, Bcl-W, Bfl-1 y Mcl-1), de modo que el balance entre ambas determinará el inicio de la apoptosis (Wong, 2011).

Si el balance es favorable al proceso de muerte, se liberará el citocromo c al citoplasma, formándose el apoptosoma, junto con el factor activador de proteasas Apaf-1 y caspasa 9, lo que activa a la caspasa 3. Otros factores pro-apoptóticos que van a ser liberados de la mitocondria son el factor inductor de apoptosis (AIF), el factor activador de caspasas derivado de la mitocondria (Smac), la proteína de unión a IAP (DIABLO) y la proteína Omi/HtrA2, que promueven la activación de caspasas por unión a las proteínas inhibidoras de la apoptosis (IAPs) (Figura 5) (Sankari et al., 2012; Wong, 2011).

La fase de ejecución de la apoptosis común a ambas vías involucra la activación de la caspasa 3, que lleva a la rotura del inhibidor de la deoxirribonucleasa activada por caspasas, responsable de la apoptosis nuclear. Esto desembocará en última instancia en la rotura de proteínas cinasas, proteínas del citoesqueleto, proteínas reparadoras del ADN y subunidades inhibidoras de las endonucleasas, que tendrán efecto sobre el citoesqueleto, el ciclo celular y las vías de señalización, lo que contribuirá a los cambios morfológicos típicos de la apoptosis (Ghobrial et al., 2005).
La activación de los receptores de muerte no sólo conduce necesariamente a la muerte celular. La interacción de TNFα con su receptor TNFR1 conduce a la formación de dos complejos de señalización: el complejo I está compuesto por TNFR1, TRADD, RIP, TRAF2 y c-IAP1 que actúan sobre el factor NFκB, potenciando procesos de inflamación y supervivencia celular por la inducción de la expresión de proteínas anti-apoptóticas como FLIP_L (Figura 6). El complejo II está formado por la disociación de TRADD, RIP y TRAF2 del TNFR1, que se une a FADD y a la caspasa 8/10, iniciando la ruta apoptótica. Así, la inducción de muerte o supervivencia dependerá del balance entre el complejo I y el II (Micheau and Tschopp, 2003).
Figura 6. Complejo de señalización inductor de muerte (DISC). Formación del complejo I y II tras la unión de TNFα a TNFR1. Tras la unión de TNF a TNFR1, son reclutados a este complejo TRADD, RIP1 y TRAF2, formando así complejo I. Después, TNFR1, RIP1 y TRADD son modificados y disociados del TNFR1. El dominio de muerte (DD) de TRADD liberado se une a FADD, resultando en el reclutamiento de las caspasa 8 (complejo II) y apoptosis. El complejo I activa a NFκB y promueve la expresión de FLIP, lo que inhibe a la caspasa 8 y antagoniza la muerte por apoptosis. Tomado de (Li and Yuan, 2008).

2.2. Puntos de control y mecanismos de regulación. Implicación de la apoptosis en el cáncer.

El cáncer es el resultado de una sucesión de cambios genéticos durante los cuales las células normales se transforman en malignas. La evasión de la muerte celular, como se dijo anteriormente, es uno de los cambios esenciales que causan esta transformación (Hanahan and Weinberg, 2000). Existen muchas formas en que una célula maligna puede reducir el proceso de apoptosis o adquirir resistencia. Generalmente, los mecanismos por los que ocurre la evasión de la apoptosis son: alteración del balance de proteínas pro y anti-apoptóticas, función reducida de las caspasas y señalización de los receptores de muerte alterada, incremento en la expresión de proteínas inhibidoras de apoptosis (IAPs) o defectos en la proteína p53 (Wong, 2011).

- **Proteínas de la familia Bcl-2**: las proteínas Bcl-2 (B-cell lymphoma 2) están constituidas por tres grupos: proteínas anti-apoptóticas que contienen el dominio BH, proteínas pro-apoptóticas que contienen el dominio BH3-only y proteínas pro-apoptóticas con dominio BH. Cuando existe sobreexpresión de una o más proteínas anti-apoptóticas, una reducción de proteínas pro-
apoptóticas o combinación de ambas, se produce la desregulación de la apoptosis existiendo una estrecha relación entre esta familia de proteínas y la aparición de cáncer (Raffo et al., 1995).

- **p53**: p53 (proteína tumoral 53) es uno de los genes supresores de tumores mejor caracterizados. No sólo está involucrada en la inducción de apoptosis, sino también en la regulación del ciclo celular, el desarrollo, la diferenciación, la amplificación génica, la recombinación de ADN, la segregación cromosómica y la senescencia celular, de ahí que se haya denominado “guardián del genoma” (revisado por Wong, 2011). Dada su implicación en multitud de procesos, el 50% de los cánceres humanos están relacionados con defectos en el gen p53 (revisado por Ouyang et al., 2012).

- **Proteínas inhibidoras de la apoptosis (IAPs)**: las proteínas inhibidoras de la apoptosis son un grupo de proteínas que regulan la apoptosis, la citocinesis y la transducción de señales. Son inhibidores endógenos de las caspasas y se han identificado ocho proteínas hasta la fecha: NAIP, c-IAP1, c-IAP2, XIAP, Survivina, Apollon, Livin/ML-IAP y IAP-like protein 2 (Vucic and Fairbrother, 2007). Se han descrito muchos tipos de cánceres asociados a una desregulación de la expresión de estas proteínas, por ejemplo, cáncer de páncreas, melanoma o linfoma (revisado por Wong, 2011).

- **Actividad reducida de las caspasas**: las caspasas son uno de los componentes más importantes en la iniciación y ejecución de la apoptosis. Bajos niveles de caspasas o una función alterada de las mismas puede conducir a una disminución en la apoptosis y aparición de carcinogénesis (revisado por Wong, 2011).

- **Señalización de los receptores de muerte alterada**: anormalidades en las vías de señalización de muerte van a conducir a la evasión de la vía extrínseca de la apoptosis, lo que va a incluir desregulación del receptor, función alterada del mismo o nivel reducido de señal, traduciéndose en una señalización defectuosa y una reducida respuesta apoptótica (revisado por Wong, 2011).

Dado la compleja red de vías de señalización que constituyen el proceso de muerte celular y que no sólo están implicadas en la apoptosis, sino que conectan ésta con la autofagia y la necrosis programada, existen aún gran cantidad de proteínas implicadas en todos estos procesos con funciones todavía desconocidas. Un mejor
entendimiento de todas las moléculas que integran y conectan dichas rutas nos ayudará a comprender mejor no sólo la patogénesis del cáncer, sino las posibles dianas sobre las que dirigir el desarrollo de nuevos fármacos que actúen selectivamente sobre un punto concreto del complejo sistema que es la muerte celular programada.

3. Proteínas cinasas asociadas a muerte y apoptosis

La maquinaria de la muerte celular programada está finamente regulada a nivel genético dada su importancia durante las fases del desarrollo y el mantenimiento de la homeostasis celular y tisular. Durante los últimos años, han sido muchos los esfuerzos por identificar los componentes claves de este proceso, incluyendo receptores, proteínas adaptadoras, proteasas y otros reguladores positivos y negativos (Shohat et al., 2002).

Todos los estudios realizados hasta la fecha evidencian que la supresión de la muerte celular es uno de los pasos críticos en el proceso multi-fase de la tumorogénesis. Los dos ejemplos más claros de genes que controlan el proceso de muerte íntimamente relacionados con el cáncer son Bcl-2 y p53. Como se dijo anteriormente, el gen Bcl-2 promueve la supervivencia celular y bloquea la muerte por sobreexpresión en respuesta a gran variedad de señales citotóxicas. Al contrario, el gen p53 es un mediador positivo de la apoptosis y la pérdida o inactivación de éste va a conducir a la supresión de la apoptosis. Hasta la fecha, p53 es el gen supresor de tumores con mayor tasa de mutaciones en múltiples cánceres humanos y va a estar asociado con muchas otras proteínas, lo que representa un importante mecanismo desarrollado por las células tumorales para suprimir su función inductora de muerte (Kissil et al., 1997).

Los genes DAP (Death Associated Protein) se identificaron por primera vez en la década de los 90 (Deiss et al., 1995), tras inducir apoptosis con INFγ en células HeLa y observar que su expresión era necesaria para la transducción de señales apoptóticas y de igual modo, su inactivación protegía a las células de la muerte. El hecho de que una reducción en la expresión de su proteína, DAPK (Death Associated Protein Kinase) condujese a un incremento en la supervivencia celular en varios ensayos de viabilidad clonal, fue el primer indicio de que DAPK era una cinasa promotora de muerte y que quizás podría actuar de igual modo que el gen p53 (Kissil et al., 1997), es decir, como un mediador positivo de la apoptosis y un gen supresor de tumores, en base a su capacidad
para sensibilizar a las células a muchas de las señales apoptóticas en los procesos de tumorogénesis (Bialik and Kimchi, 2006).

Desde entonces, han sido muchas las investigaciones que se han centrado en examinar el estado de la proteína DAPK en diferentes tumores humanos así como la importancia que ésta pueda tener como herramienta diagnóstica y terapéutica, apareciendo de forma interesante eventos de silenciamiento génico y pérdida significativa de expresión, principalmente debidos a procesos de metilación o hipermetilación del ADN, como ocurre en el linfoma de Burkitt, la leucemia linfoblástica aguda pre-B o el mieloma múltiple, que presentan un porcentaje de metilación del 100% (Bialik and Kimchi, 2006), o a la aparición de aberraciones cromosómicas y pérdida de heterozigosisidad, como las encontradas en varias leucemias y la mayoría de cánceres de vejiga, respectivamente (Kissil et al., 1997).

Dada la clara implicación que la proteína DAPK tiene en la biología celular y en los procesos de tumorogénesis y desarrollo de cáncer, son muchos los esfuerzos que se están llevando a cabo por conocer cuál o cuáles son las funciones celulares de estas proteínas asociadas a muerte, incluyendo sus propiedades bioquímicas, mecanismos de regulación y sustratos diana (Bialik and Kimchi, 2006). Muchos de estos interrogantes siguen aún sin respuesta, pero abren un amplio campo de investigación que sitúan a la proteína DAPK en el contexto de la terapia antitumoral, pudiendo convertirse en una importante diana de acción objeto de nuevos fármacos antitumorales más selectivas.

3.1. DAPK1 (Death-associated Protein Kinase 1) y proteínas relacionadas de la familia

Las proteínas cinasas asociadas a muerte constituyen una subfamilia de serina/treonina cinasas formada por cinco miembros, que comparten un dominio cinasa común a todos ellos (figura 7) (Kogel et al., 2001). El primer miembro de la familia que se aisló, situado en el cromosoma 9 (9q21.33), fue la proteína cinasa asociada a muerte, DAPK o DAPK1 (Death-associated Protein Kinase 1), una serina/treonina cinasa (Ser/Thr cinasa) de 160 kDa regulada por Ca\(^{2+}\)/calmodulina (Ca\(^{2+}\)/CaM) que media muerte celular por incremento de su actividad (Bialik and Kimchi, 2006). Otros dos miembros homólogos de la DAPK1 y estrechamente relacionados son DRP-1/DAPK2 (Death associated protein kinase Related Protein 1/Death Associated Protein Kinase 2) de 42 kDa, posee un dominio terminal que media la homodimerización de la misma y
ZIPk/Dlk/DAPK3 (Zipper interacting protein kinase/DAP Like Kinase/Death Associated Protein Kinase 3) de 55 kDa, no contiene dominio regulador pero si un dominio denominado cremallera de leucina, capaz de formar oligómeros e interactuar con otras enzimas que poseen dominios similares (Shiloh et al., 2014); (Kogel et al., 2001)). Ambos están codificados por genes situados en los cromosomas 15q22.31 y 19q13.3 respectivamente y comparten entre un 80 y un 83% de identidad aminoácida con el dominio catalítico de DAPK1. Los últimos dos miembros integrantes de la familia, DRAK-1 y DRAK-2 (DAP Kinase Related Apoptosis inducing Protein Kinases 1 and 2), se sitúan en los cromosomas 7p12.14 y 2q32.3 y comparten sólo el 50% de identidad con el dominio cinasa de DAPK1.

Dentro del quinoma celular, la familia de las DAPKs pertenece al grupo de proteínas cinasas dependientes de calcio/calmodulina (CAMK), un grupo constituido por un total de 113 miembros que comparten una secuencia común de aproximadamente 50 residuos denominada dominio autorregulador o ARD, que regula la actividad catalítica de una forma dependiente de Ca2+/CaM. Filogenéticamente, la familia DAPK está muy relacionada con la familia de cinasas relacionadas con la cadena ligera de miosina (MLCK), con la que comparte el 44% de identidad del dominio catalítico (Temmerman et al., 2013).

Se han encontrado proteínas ortólogos de DAPK en roedores y en Caenorhabditis elegans, pero no en Drosophila u otros organismos inferiores. ZIPk y DRP-1 sólo están presentes en mamíferos (Bialik and Kimchi, 2006).
3.2. Características estructurales y localización subcelular de DAPK1

La proteína DAPK está codificada por el gen DAP, situado en el cromosoma 9q21.33 (NCBI Reference Sequence: NM_001202537.1) y da lugar a un transcrito de 4292 bp que codifica una proteína de 1430 aminoácidos (aa) y 160 kD. DAPK1 presenta una compleja estructura organizada en varios dominios funcionales (Figura 8):

- Dominio catalítico: incluye el dominio cinasa, común a todos los miembros de la familia y que contiene el sitio de unión al sustrato y el dominio autoinhibitorio de unión a CaM, clave para la regulación de la actividad del enzima, como se verá más adelante (Bialik and Kimchi, 2006; Lin et al., 2010).
- Dominio extracatalítico: constituido por ocho secuencias repetidas de ankirina, dos dominios de unión a nucleótidos o "P-loops", un dominio de unión al citoesqueleto de actina, que engloba los dominios ROC y COR (Carlessi et al., 2011) y un dominio de muerte en el extremo C-terminal seguido de una cola de 17 aa ricos en residuos de serina (Lin et al., 2010).

Figura 8. Diagrama esquemático de la estructura en dominios de la proteína DAPK1. Modificado de (Schneider-Stock R and et al., 2009; Bialik and Kimchi, 2014).

Cada una de las proteínas de la familia va a presentar una localización subcelular específica. DAPK1 es una proteína citoplasmática que se encuentra íntimamente relacionada con el citoesqueleto de actina, mientras que el resto de miembros carecen de este dominio de unión. DRP1/DAPK2 es una proteína citoplasmática soluble y Dlk/ZIPk es principalmente citoplasmática, aunque con una pequeña porción nuclear gracias a la presencia de una señal de localización nuclear (NSL) en el extremo c-terminal (Shiloh et al., 2014). DRAK1 y DRAK2 son proteínas nucleares que van a estar asociadas a
estructuras específicas como los cuerpos nucleares (Kogel et al., 2001)), (Kogel et al., 1998). Las cinco cinasas están expresadas de forma ubicua en casi todos los tejidos, pero DAPK1 es particularmente abundante en el cerebro de embriones y adultos, concretamente en la corteza y el hipocampo, de ahí que se asocie a enfermedades con daño neuronal como la isquemia cerebral (Kogel et al., 2001). DRP1/DAPK2 se va a expresar abundantemente en corazón, pulmón y músculo esquelético (Kawai et al., 1999). DRAK2 va a localizarse casi exclusivamente en tejido linfoide (Bialik and Kimchi, 2006).

Aunque el dominio cinasa es el dominio funcional más importante de DAPK pues media su actividad enzimática, cada uno de los dominios adicionales tienen una función particular que servirá para regular su actividad catalítica, estabilidad, localización y/o interacción con sus sustratos (Shiloh et al., 2014) (Tabla 2).

<table>
<thead>
<tr>
<th>Domain</th>
<th>Interactor</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinase Domain</td>
<td>Hsp90</td>
<td>Stability and activation of catalytic activity</td>
</tr>
<tr>
<td>CaM-autoregulatory</td>
<td>Ca⁹⁺/CaM</td>
<td>Inhibits catalytic activity in the absence of CaM</td>
</tr>
<tr>
<td>Ankyrin Repeats</td>
<td>DIP-1/Myb1</td>
<td>Degradation and/or localization</td>
</tr>
<tr>
<td>Ankyrin Repeats</td>
<td>LAR</td>
<td>Dephosphorylates Tyr491/492 to activate DAPK</td>
</tr>
<tr>
<td>ROC-COR</td>
<td>GTP</td>
<td>Inhibits DAPK activity, increases Ser308 phosphorylation</td>
</tr>
<tr>
<td>ROC-COR²</td>
<td>LRRK2</td>
<td>unknown</td>
</tr>
<tr>
<td>ROC-COR²</td>
<td>PP2A</td>
<td>D Dephosphorylates Ser 308 to activate DAPK</td>
</tr>
<tr>
<td>ROC-COR²</td>
<td>Pin1</td>
<td>Inhibits Pin1’s isomerase activity</td>
</tr>
<tr>
<td>Death Domain</td>
<td>ERK</td>
<td>Phosphorylates Ser735 to activate DAPK</td>
</tr>
<tr>
<td>Death Domain</td>
<td>UNC5H2</td>
<td>Activates DAPK thru Ser308 dephosphorylation, leads to apoptosis</td>
</tr>
<tr>
<td>Death Domain</td>
<td>MARK1/2</td>
<td>Activates MARKs to phosphorylate tau</td>
</tr>
<tr>
<td>Death Domain</td>
<td>PKM2</td>
<td>Activates PKM2 to enhance glycolysis</td>
</tr>
<tr>
<td>Death Domain</td>
<td>TSC2</td>
<td>Inhibits TSC2 by disrupting interaction with TSC1</td>
</tr>
<tr>
<td>Death Domain</td>
<td>KLHL20</td>
<td>Degradation</td>
</tr>
</tbody>
</table>

Tabla 2. Moléculas y proteínas que interactúan con los dominios de DAPK1 y sus funciones conocidas o propuestas. a: indica las proteínas que interactúan con una región responsable de la localización de DAPK en el citoesqueleto. Azul: indica una interacción que regula DAPK1. Rosa: indica un efector de DAPK1. Tomado de (Shiloh et al., 2014).
- **Dominio catalítico: estructura y función**

El dominio catalítico o dominio cinasa de la DAPK1, localizado en el extremo N-terminal de la proteína (aa 1-275), está compuesto por 11 subdominios típicos encontrados en todas las Ser/Thr cinasas. La estructura cristalográfica de este dominio ha mostrado la presencia de dos zonas de aminoácidos que parecen albergar el sitio de unión al sustrato donde se llevará a cabo la fosforilación y que está rodeado de residuos básicos que ayudarán al reconocimiento de éste (Velentza et al., 2001). Además presenta una característica clave y única a esta familia de proteínas, un segmento corto o lazo básico, que se orienta hacia el sitio activo y que parece facilitar no sólo la homooligomerización de estas cinasas, sino también la interacción con miembros de otras familias de proteínas (Zimmermann et al., 2010). Este lazo también podría interaccionar con otros miembros de la familia, como ZIPK, siendo fosforilada y activada por DAPK1, lo que indica que este lazo no sólo es responsable de la homodimerización, sino que media la interacción física y funcional entre otros miembros de la familia (Shani et al., 2004).

Seguido al dominio cinasa se encuentra el dominio de autorregulación/unión a Ca\(^{2+}\)/calmodulina (aa 278-320), que forma una estructura en lazo que impide la actividad catalítica de la enzima, funcionando como un pseudosustrato (figura 9). Éste dominio va a sufrir la autofosforilación de la Serina 308 (Ser308), un evento autoinhibitorio que ocurre en estado basal, es decir, en ausencia de Ca\(^{2+}\). La posición de la carga negativa del resíduo de fosfo-serina genera un sitio de contacto adicional entre el dominio autorregulador y el catalítico, funcionando como un dispositivo de bloqueo, manteniendo a la enzima en un estado inactivo (Bialik and Kimchi, 2006; Shohat et al., 2001); (Shiloh et al., 2014).

La estructura cristalográfica revela también que el extremo C-terminal de este dominio (aa 293-320) forma una hélice con el extremo N-terminal, albergando el sitio de unión de la CaM (de, I et al., 2010).

- Dominio extracatalítico

A partir del dominio común cinasa, los miembros de la familia van a presentar diferencias en la organización estructural (ver figura 7). DAPK1 contiene una gran extensión C-terminal, con varios dominios funcionales (Bialik and Kimchi, 2006):

Primero encontramos una serie de ocho ankirinas repetidas (aa 373-637), seguidas al dominio catalítico, que van a mediar interacciones proteína-proteína. La eliminación de este dominio va a provocar la re-localización de la proteína desde el citoesqueleto de actina a las adhesiones focales (Bialik et al., 2004; Cohen et al., 1997).

Le siguen dos motivos en brazo-P o “loop-P”, que podrían funcionar como regiones de unión adicionales a nucleótidos (Cohen and Kimchi, 2001) y que se superponen al dominio de unión al citoesqueleto, común a las proteínas relacionadas con éste y que podría dirigir y anclar a DAPK1 con los filamentos de actina (Bialik and Kimchi, 2006), pues estudios realizados con proteínas de fusión FLAG-DAPK (Cohen et al., 1997) y GFP-DAPK1 (Bialik et al., 2004), han revelado su asociación con las fibras de estrés y los filamentos corticales, definiendo así a la proteína como una cinasa asociada al citoesqueleto de actina.

DAPK1 comparte una secuencia homóloga identificada recientemente con las proteínas ROCO (Marin et al., 2008), una familia de proteínas multidominio, la mayoría
cinasas, caracterizadas por la presencia de dos dominios en tándem: el dominio ROC (Ras of complex proteins), un dominio GTPasa similar al de la proteína Ras e inmediatamente después el dominio COR (C-terminal de ROC) (Carlessi et al., 2011), (aa 667-1288) que parece mediar la heterodimerización de la proteína con ella misma y con otras enzimas (Klein et al., 2009). La importancia del dominio ROC-COR no está muy claro, a pesar de que recientes estudios parecen mostrar que es el lugar a través del cual DAPK1 dimeriza y se une a GTP, participando en otro mecanismo de activación de la proteína y que se describirá a continuación (Carlessi et al., 2011).

El último dominio en el extremo C-terminal es el dominio de muerte (aa 1312-1396), que va seguido de una cola de 17 aa ricos en residuos de serina, una característica común a otras proteínas que contienen dominio de muerte (Feinstein et al., 1995). Este dominio media la interacción con otras proteínas implicadas en la ruta de apoptosis y ambos dominios son clave en la regulación de la DAPK.

Es interesante destacar una isoforma de DAPK-1, resultante de un proceso de corte y empalme alternativo, la DAPKβ (ver figura 7), que posee una extensión única de 12 aa en el extremo C-terminal, después de la cola rica en serina, que ha sido identificada tanto en ratón (Jin et al., 2001) como en humano, concretamente en células HeLa y que podría tener actividad anti-apoptótica, bloqueando la muerte inducida por TNF en estas células, aunque estos hallazgos siguen siendo muy discutidos por atribuir a la proteína una doble función, pro y anti-apoptóticas (Jin and Gallagher, 2003).

3.3. Mecanismos intramoleculares de activación y regulación de DAPK1

Como se dijo anteriormente, DAPK1 pertenece al grupo de proteínas cinasas dependientes de Ca²⁺/CaM y todas comparten una secuencia común o dominio autorregulador (ARD), que sigue al dominio catalítico (Temmerman et al., 2013). La disección de la estructura de la proteína revela tres niveles moleculares de regulación, que controlan la actividad catalítica y el efecto pro-apoptótico del enzima y que van a implicar a todos los dominios de la proteína (Figura 10).
Figura 10. Mecanismos de regulación intra-molecular de DAPK. En el estado inactivo, el dominio autorregulador CaM ocupa el sitio catalítico, previniendo el acceso al sustrato. La auto-fosforilación de la Ser308 bloquea el dominio catalítico. Los mecanismos inhibidores pueden ser liberados por tres mecanismos: 1. La CaM se une al dominio autorregulador separándolo del dominio catalítico y disminuyendo la autofosforilación de la Ser308. 2. La fosfatasa PP2A defosforila la Ser308, lo que disminuye la afinidad de unión de ambos dominios autorregulador y catalítico, permitiendo el acceso del sustrato. 3. El GTP es hidrolizado a GDP por el dominio ROC, dando lugar a un cambio conformacional que disminuye la autofosforilación de la Ser308. Tomado de (Shiloh et al., 2014).

El primer mecanismo de activación comprende el citado segmento regulador de CaM, que posee un efecto autoinhibitorio de la actividad catalítica en ausencia de CaM, manteniendo el dominio autorregulador unido al dominio catalítico y bloqueando el acceso de sustratos exógenos, impidiendo así la actividad DAPK1. Tras el estímulo adecuado, aumentan los niveles intracelulares de Ca$^{2+}$ y la CaM se unirá al dominio autorregulador, liberándolo de su unión al dominio cinasa y permitiendo la fosforilación del sustrato (Shiloh et al., 2014). Se ha comprobado que mutantes para el dominio autorregulador generan una DAPK1 constitutivamente activa tanto in vitro como in vivo (Cohen et al., 1997).

El segundo nivel de regulación está mediado por el mecanismo de autofosforilación de la serina 308, situada dentro del dominio autorregulador Ca$^{2+}$/CaM, como un mecanismo que inhibe la actividad catalítica (Shohat et al., 2002). Así, la forma
fosforilada de DAPK presenta una baja afinidad por la CaM y la eliminación del grupo fosfato va a debilitar el bloqueo ejercido entre ambos dominios y a liberar parcialmente la autoinhibición, permitiendo así las interacciones dependientes de carga entre el segmento regulador de CaM, la hendidura catalítica y el sitio de unión al ATP. Esto resulta en una actividad independiente de Ca$^{2+}$/CaM. Así, tras el estímulo apropiado, la defosforilación de la serina libera la proteína del mecanismo de autoinhibición y permite su función pro-apoptótica (revisar figura 9) (Bialik and Kimchi, 2006; Shohat et al., 2001). Varios grupos han establecido una posible relación entre la Serina/treonina proteína fosfatasa PP2A y el estado de activación de DAPK1, por defosforilación de su Ser308 (Gozuacik et al., 2008). Esta fosfatasa parece estar implicada en la cascada de activación de muerte celular vía receptor UNC5H, receptor dependiente de su ligando netrina-1, ambos implicados en el desarrollo del sistema nervioso a través de la proteína DAPK-1. Al parecer podría formarse un complejo oligomérico reclutado por el propio receptor en ausencia de netrina-1 y formado por DAPK, PP2A, y la subunidad PR65β que conducirían a la defosforilación de DAPK1 y por tanto a su activación, lo que induciría la apoptosis mediada por el receptor (Guenebeaud et al., 2010).

Se ha estudiado el efecto de la fosforilación de la Ser308 en relación a las propiedades de unión de la proteína DAPK1 a la CaM (Dagher et al., 2011) y se ha descrito que el péptido fosforilado requiere al menos tres iones Ca$^{2+}$ para que ocurra la unión de la CaM, mientras que el péptido no fosforilado se une a la CaM eficientemente tan sólo con un ion Ca$^{2+}$. Estos datos sugieren una relación entre la señal de Ca$^{2+}$ y la defosforilación de la Ser308 en la regulación de la actividad de DAPK. Específicamente, la activación de una fosfatasa y la posterior defosforilación de la Ser308 inducen una alta sensibilidad de la enzima al Ca$^{2+}$, resultando en la activación de la cinasa a bajas concentraciones de éste. Alternativamente, la ausencia de la actividad fosfatasa conduce a la activación de DAPK1 sólo cuando se induce una elevada concentración de Ca$^{2+}$, interviniendo de este modo la CaM. Estos dos mecanismos diferentes de activación de DAPK1 van a permitir su activación a través de diferentes rutas de señalización (Shiloh et al., 2014).

Por tanto, el evento principal e imprescindible que va a mantener silenciada la actividad pro-apoptótica de forma basal será la autofosforilación de la Ser308, mientras
que su defosforilación será sólo una fase en la activación de DAPK1. (Shohat et al., 2001).

Se ha identificado un tercer mecanismo de activación de la DAPK1 que implicaría al dominio ROC-COR, definido como un dominio GTPasa, capaz de unirse de forma preferente a través de su motivo P-loop. Al parecer, la unión del GTP regularía negativamente la actividad catalítica de DAPK1, ya que la hidrólisis del GTP promovería la autofosforilación de la Ser308, de forma independiente de una posible disminución o reclutamiento de la fosfatasa PP2A, manteniendo inactiva a la proteína en estado basal y suprimiendo sus efectos celulares (ver figura 10) (Shiloh et al., 2014; Carlessi et al., 2011).

- Reguladores adicionales de DAPK1 y rutas de activación

DAPK está asociada a la regulación de varios procesos celulares, que incluyen apoptosis dependiente de caspasas, anoikis, autofagia, inflamación, adhesión celular, motilidad, etc. Entender cómo está involucrada la proteína en este amplio rango de actividades ha sido el objetivo principal desde que se supiese que era un supresor tumoral (Bialik and Kimchi, 2014).

La estructura y función de DAPK1 va a permitir múltiples mecanismos de regulación/activación además de su propia autoinhibición, como mecanismos post-translacionales, múltiples sitios de fosforilación y adquisición de distintas conformaciones espacio-temporales, que permitirán o impedirán a la proteína realizar su actividad cinasa y por tanto unirse a sus diversos sustratos. Además, su estabilidad proteica es modulada por al menos tres sistemas distintos dependientes de ubiquitina. De esta forma DAPK va a verse regulada de forma directa y a través de reguladores adicionales que se van a unir gracias a sus dominios extracatalíticos, formando lo que se conoce como el interactoma de DAPK (Figura 11) (Bialik and Kimchi, 2014).
Diversos estudios han revelado que el aparato de transcripción génica de DAPK1 no está controlado simplemente por un mecanismo de inhibición/activación del promotor, sino que la transcripción está sujeta a regulación a diferentes niveles, metilación del promotor, fosforilación por otras cinasas y autofosforilación e interacción con otras proteínas (Benderska and Schneider-Stock, 2014). La función pro-apoptótica de DAPK1 debe ser finamente controlada para asegurar, por un lado, su silenciamiento en condiciones de crecimiento y permitir, por el otro, su rápida activación en respuesta a señales apoptóticas apropiadas. Aunque la caracterización de las funciones de DAPK en el sistema apoptótico han sido ampliamente estudiadas, las características estructurales y funcionales de la proteína y el impacto de su ausencia en el desarrollo del cáncer, así como el mecanismo de activación de DAPK han sido recientemente descritas (Shohat et al., 2001).

Un primer mecanismo de activación de DAPK-1 se basa en eventos adicionales de fosforilación, que van a involucrar a la vía de señalización de las proteínas cinasas activadas por mitógenos o MAPK, implicadas en diversas actividades celulares como expresión génica, activación de la maquinaria del ciclo celular, metabolismo, motilidad, supervivencia, apoptosis y diferenciación (Figura 12) (Krishna and Narang, 2008).
Tras distintos estímulos que incluyen hormonas (insulina), factores de crecimiento (PDGF, EGF, FGF), citocinas inflamatorias (TNF), estrés ambiental, radiación, etc, DAPK-1 va a interactuar de forma directa con ERK a través de su dominio de muerte, fosforilando su Ser735 (ver figura 8 y 12), lo que va a aumentar su actividad cinasa y su función pro-apoptótica. De forma recíproca, ERK va a ser un sustrato de la propia DAPK1 y a promover la retención de ERK en el citoplasma, inhibiendo su translocación y señalización nuclear. Este mecanismo bidireccional entre ERK y DAPK juega un papel fisiológico y positivo en la regulación de la apoptosis, sugiriendo una posible contribución a la función apoptótica del dominio de muerte de DAPK1 (Chen et al., 2005).

ERK también puede regular de forma negativa a DAPK, pues se ha descrito que la disminución de nutrientes o la activación con PMA bloquean la apoptosis inducida por la sobreexpresión de DAPK1 de una forma dependiente de ERK (Anjum et al., 2005) a través de una segunda interacción con el efector de ERK, la cinasa RSK (p90 ribosomal S6 kinase), que fosforilaría a DAPK en su Ser289 (ver figuras 11 y 12) dentro del dominio autorregulador de CaM, lo que va a resultar en una importante modulación de la actividad proapoptótica de DAPK1 (Shiloh et al., 2014).

Otro efecto que va a tener la estimulación con EGF sobre la actividad DAPK independiente de ERK, es la defosforilación de las tirosinas Y491/492, localizadas en el dominio ankirina, por parte de la tirosina fosfatasa relacionada con el antígeno común

![Figura 12. Regulación de DAPK a través de factores de crecimiento.](image-url)

1. Ruta de fosforilación directa de DAPK por ERK.
2. Ruta indirecta de fosforilación de DAPK por RSK a través de la activación de ERK.
3. Regulación recíproca de LAR y Rsc sobre la activación de DAPK. Tomada de (Lin et al., 2010).
leucocitario LAR, que aumenta la capacidad de DAPK para defosforilar uno de sus principales sustratos, la cadena ligera de la miosina, MLC, implicada en el citoesqueleto de actina y en la aparición de los eventos propios de la apoptosis (Wang et al., 2007). De forma recíproca, la cinasa Src también va a fosforilar estas tirosinas, pero esta vez inhibiendo la actividad cinasa de DAPK-1 (ver figura 12) (Lin et al., 2010; Wang et al., 2007).

- **Mecanismos post-traduccionales que regulan la estabilidad de DAPK1**

 Además de todas las proteínas de interacción que van a regular a la DAPK a través de mecanismos de fosforilación/defosforilación, van a existir otros factores que indirectamente van a afectar a la estabilidad de la proteína. La presencia de los dominios de interacción proteína-proteína dentro de la estructura primaria de DAPK, incluyendo su motivo de ankirinas repetidas y el dominio de muerte, sugieren que la interacción adicional entre DAPK y otras proteínas celulares será también importante para la regulación de las actividades del enzima (Jin et al., 2002).

 En primer lugar, DAPK va a presentar en su dominio cinasa una región que va a ser reconocida por la chaperona Hsp90 (ver figura 11), que va a ser necesaria para su maduración, estabilidad y activación (Citri et al., 2006). El uso de inhibidores de esta proteína se ha visto que desemboca en la degradación vía proteasoma de la DAPK defosforilada endógena. En este proceso destaca la proteína Mindbomb 1 (MIB1)/DAPK-interacting protein(DIP-1), que reconoce el dominio de repetición de ankirinas y a través de su actividad ligasa E3 promueve la ubiquitinización de DAPK tanto in vivo como in vitro, y su degradación vía proteasoma (Jin et al., 2002).

 Otras proteínas con actividad ligasa E3 que van a conducir a la acumulación de DAPK fosforilada e inactiva, por degradación de la forma defosforilada, son la proteína CHIP (HSC70-interacting protein), que forma un complejo ternario con Hsp90 (revisado por (Bialik and Kimchi, 2014)) y la proteína BTB/Kelch o KLHL20, que será reconocida por la ligasa Cullin-RING, uniéndose a DAPK en su dominio de muerte y ubiquitinizándola (Lee et al., 2010).

 Por último, estudios realizados para estimar la vida media de la proteína DAPK han revelado la formación de un complejo en el citoplasma tras la activación con TNFα entre DAPK-1 y la catepsina B, una proteasa lisosomal involucrada en la invasión celular,
el tráfico de vesículas y la muerte celular (Li et al., 2013), que se uniría en la porción comprendida entre los aminoácidos 836-947, entre el dominio ankirina y el de muerte, y que llevaría a la rotura proteolítica de DAPK1, en cuyo caso estaríamos hablando de un papel de la catepsina B como regulador negativo en la inducción de apoptosis dependiente de TNF-α (Lin et al., 2007).

Esta función de supervivencia ejercida por DAPK de forma indirecta bajo dichas condiciones subraya la importancia de desarrollar inhibidores de DAPK1 que puedan sensibilizar a las células a seleccionar señales apoptóticas activadas por estrés (Lin et al., 2007).

3.4. Participación de DAPK-1 en los procesos celulares

DAPK1 va a jugar un importante papel en un amplio rango de vías de traducción de señal y con diversos resultados biológicos dependiendo del estímulo dado que va a incluir procesos tan importantes como apoptosis, autofagia, anoikis, crecimiento celular y respuestas inflamatorias (Lin et al., 2010).

Gracias a su dominio de muerte, DAPK va a participar en múltiples vías de señalización de muerte celular por apoptosis tras la interacción con diversos ligandos o estímulos, incluyendo INF-γ, TGFβ, TNFα, Fas, desorganización de la matriz extracelular y oncogenes como c-Myc (Figura 13). Así, en base a la vía de señalización activada, DAPK va a mediar interacciones con las proteínas ERK, Src, el receptor dependiente de ligando UNC5H2, PDCD6, RSK, FADD y TNFR1, y DANGER entre otras (Yoo et al., 2012). A continuación se desarrollan las vías de activación que involucran la acción de DAPK y que han sido más estudiadas hasta el momento.

Figura 13. Principales estímulos descritos que activan vías en las que DAPK participa.
Inflamación y apoptosis

La participación de DAPK en el proceso de inflamación cada vez es más clara debido a su papel en procesos iniciados por moléculas pro-inflamatorias como INF-\(\gamma\), TNF\(\alpha\) o TGFB. Aunque la capacidad de DAPK para regular la señalización inflamatoria no está clara, es un hecho que puede inhibir la inflamación así como promoverla en diferentes sistemas biológicos (Lai and Chen, 2014).

DAPK fue identificada por primera vez por su papel en la apoptosis inducida por INF-\(\gamma\) (Deiss et al., 1995) y ahora se sabe que uno de las principales actividades anti-inflamatorias de DAPK1 es su implicación en la formación del complejo inhibidor de la tansducción (GAIT) activado por INF-\(\gamma\), conformado por la glutamil-prolil sintetasa (EPRS), la proteína 1 asociada a NS1 (NSAP1), la proteína ribosomal L13a y la GADPH (Mukhopadhyay et al., 2008). GAIT se va a unir a la región 3' de los transcritos de moléculas como CCL22, CCR3, CCR4 y CCR6, inhibiendo la traducción de dichas moléculas inflamatorias (Vyas et al., 2009). DAPK además, participa en la supresión de la expresión de varias moléculas pro-inflamatorias implicadas en la formación del complejo GAIT.

Estudios recientes en células de carcinoma humano y cáncer de ovarios, evidencian que DAPK es rápidamente defosforilada en su Ser308 tras el tratamiento con TNF\(\alpha\), lo que va a inhibir la activación de NF-\(\kappa\)B de modos diferentes, aunque los puntos exactos sobre los que ejerce su acción aún no están claros (Lai and Chen, 2014). Además, esto va a ocasionar la disminución de otros genes anti-proliferativos como COX-2, ICAM-1 y genes anti-apoptóticos como XIAP. Por tanto, la muerte inducida por TNF\(\alpha\) a través de FADD, TRADD, caspasas 8, 3 y 9, se va a ver potenciada por la activación de DAPK1, aunque aún no esté claro si existe una interacción con ellas o se trate de ejercer su actividad cinasa dentro de la ruta de activación (Yoo et al., 2012).

TGFB es otra citoquina que regula funciones celulares como la proliferación, la diferenciación y la apoptosis, sobre todo durante el desarrollo embrionario y ejerce sus efectos biológicos por unión a los receptores de superficie tipo I y II, a los que se van a acoplar y fosforilar las proteínas Smad, que formarán un complejo que se translocará al núcleo. Éstas actúan como activadores o supresores de factores de transcripción de genes tempranos. En este proceso, DAPK podría ser un efector directo de la apoptosis.
dependiente de TGFβ, pues presenta en su promotor elementos de unión a proteínas Smad (SBEs), y estudios con mutantes negativos para DAPK1 muestran el bloqueo ejercido en la liberación de citocromo c y la caída del potencial tras la estimulación con TGFβ, lo que además indica que DAPK1 actúa antes de ciertos eventos pro-apoptóticos dependientes de la mitocondria (Jang et al., 2002).

- Daño al ADN y activación de oncogenes

La expresión del gen DAPK1 va a incrementar en respuesta a estímulos que activen el gen p53, como son agentes de daño al ADN y la expresión de oncogenes como c-Myc, E2F-1 y E1a (Bialik and Kimchi, 2006; Martoriati et al., 2005). El gen p53 es uno de los genes supresores de tumores más importantes, pues está implicado en diversos procesos de división celular, como regulación de la expresión génica, control del ciclo celular, programación de la muerte celular y estabilidad del genoma (M. López et al., 2001). Recientemente se ha descrito que los niveles de expresión de DAPK van a verse incrementados tras la activación de p53 por inducción de p19ARF (Martoriati et al., 2005). De hecho, el promotor DAPK contiene siete elementos de unión a p53 (Benderska and Schneider-Stock, 2014) y estudios en modelos de ratón han evidenciado que la pérdida de expresión de DAPK confiere una ventaja selectiva a las células cancerígenas y un aumento en la progresión del tumor, y además, la ausencia de DAPK aumenta parcialmente p53 en respuesta a expresión de oncogenes (Raveh et al., 2001).

Es particularmente interesante y considerando lo dicho anteriormente, que DAPK en sí misma es una diana transcripcional de p53 (Martoriati et al., 2005)), lo que indica la existencia de un bucle de retroalimentación, en el que DAPK1 y p53 van a activarse entre sí, conectando así a la proteína DAPK con la vía intrínseca mitocondrial de la apoptosis.

3.5. Inducción de muerte celular vía activación de DAPK1. Principales sustratos.

La identificación de las proteínas que interactúan con DAPK y que funcionan como efectoras ha sido crítica para comprender los mecanismos moleculares de la función de la proteína. Como su propio nombre sugiere, la función principal de la proteína DAPK va a ser la regulación de la muerte celular, siendo un componente esencial de diferentes vías de señalización de este mecanismo. La mayoría de sus
funciones van a estar mediadas por la fosforilación de sus proteínas diana, por lo que una porción significativa de su interactoma va a estar comprendida por sus sustratos (Figura 14). El modelo propuesto hasta ahora, dada la gran variedad de estímulos que pueden desembocar en la activación de DAPK1, es que puede estar unido a varias rutas moleculares dependiendo del escenario celular, que va a culminar en procesos de apoptosis, autofagia, crecimiento celular y respuestas inflamatorias (Bialik and Kimchi, 2006; Bialik and Kimchi, 2014).

Aunque in vivo los sustratos de la DAPK1 no están bien caracterizados, sí que podemos señalar algunos que in vitro claramente son fosforilados o activados por la función cinasa de DAPK (Kogel et al., 2001).

![Figura 14. Principales sustratos de DAPK1: el interactoma.](image)

Figura 14. Principales sustratos de DAPK1: el interactoma. Esquema de los sustratos y proteínas efectoras de DAPK (polígonos) y las vías de señalización mediadas por ellas (líneas negras). Las interacciones cinasa/sustrato están indicadas por las líneas rojas. Las líneas rojas discontinuas indican los efectores indirectos (óvalos). Las líneas negras discontinuas son funciones conocidas mediadas por efectores de DAPK sin confirmar que sean dependientes. Los efectores se agrupan por colores según su función: respuesta inmune (morado), funciones del citoesqueleto (azul), oncogénesis (verde), autofagia y muerte celular (rosa). Los colores adicionales (naranja y amarillo) representan efectores huérfanos con función desconocida. Tomado de (Bialik and Kimchi, 2014).

- **Sustratos asociados a muerte celular. Funciones apoptóticas de DAPK**

 Una de las primeras funciones atribuidas a la DAPK fue su papel en la apoptosis, tanto dependiente como independiente de p53 (Bialik and Kimchi, 2006). Como se dijo anteriormente, DAPK es un sustrato de p53 activado por oncogenes (Martoriati et al.,
pero además, de forma recíproca la DAPK va a activar a p53 por dos vías: a través de p19ARF, inhibiendo a Mdm2, el cual media la degradación de p53 vía proteasoma iniciando así el proceso de apoptosis por ambas vías (Raveh et al., 2001); y de forma independiente de p19ARF, al fosforilar DAPK1 directamente a p53 en su serina 20, incrementando su actividad específica como factor de transcripción (Maclaine and Hupp, 2009).

La autofagia es una vía de degradación dependiente de lisosomas que promueve la homeostasis celular en respuesta a estrés por deprivación de nutrientes, estrés oxidativo o daño al ADN (Vessoni et al., 2013). Parece existir una clara participación de DAPK1 en el proceso autofágico a través de la fosforilación de la molécula asociada a autofagia beclina-1, un supresor de tumores que forma parte del complejo proteico de la fosfatidilinositol-3 kinasa, PI3K, y que participa en la nucleación de los fagosomas por interacción directa con su inhibidor Bcl-2. En condiciones de crecimiento, beclina-1 está unida a varios miembros de la familia Bcl-2, de forma que DAPK fosforila a la beclina-1 en su treonina 119, lo que provoca la disociación de su inhibidor Bcl-X\textsubscript{L}, promoviendo así el proceso de autofagia (ver figura 14) (Zalckvar et al., 2009).

De forma similar a la Beclina-1, DAPK va a interactuar con otras proteínas: la proteína asociada a microtúbulos MAP1B, que funciona como cofactor positivo en la formación de vesículas autofágicas (Harrison et al., 2008) y la cinasa PKD, implicada en el sistema contráctil de los cardiomiocitos y que va a ser fosforilada por DAPK activando así la vía de las JNK y por tanto la necrosis programada, un mecanismo alternativo a la apoptosis (revisado por (Bialik and Kimchi, 2014).

- Sustratos asociados al citoesqueleto de actina. Participación de DAPK en el proceso de metástasis.

La proteína DAPK fue descrita como una proteína asociada al citoesqueleto, concretamente a las fibras de estrés y a los filamentos corticales de actina, por lo que va a tener varios sustratos asociados a éste, incluyendo el primer sustrato atribuido a DAPK, la cadena ligera de la miosina II o MLC (Bialik et al., 2004; Cohen et al., 1997). DAPK va a activar a la miosina II a través de la fosforilación de su serina 19, lo que va a llevar a un aumento de la contractibilidad desde el centro de la célula, resultando en la
emisión de las protrusiones y las vesículas de membrana que caracterizan al proceso de apoptosis (Bialik et al., 2004).

Otro importante sustrato de DAPK y componente importante del citoesqueleto es la tropomiosina, que contribuye a la formación y estabilización de las fibras de estrés en musculo liso y que bajo condiciones de estrés oxidativo en células endoteliales va a ser fosforilada por DAPK en su serina 283, tras previa activación de la cinasa ERK, lo que va a inducir el ensamblaje de la actina (Houle et al., 2007).

Las interacciones de la célula con la matriz extracelular (ECM) regulan una gran variedad de funciones celulares, como son el crecimiento, la diferenciación, la migración y la supervivencia. La mayoría de las células normales requieren una correcta adhesión a la ECM para su supervivencia y una inadecuada interacción célula-matriz va a causar apoptosis por un fenómeno conocido como anoikis (Wang et al., 2002). Este proceso se describe como la respuesta apoptótica de las células adherentes en ausencia de interacciones célula-matriz (Galluzzi et al., 2012).

Dada la función de DAPK1 como un potente inhibidor de la polarización celular independiente de su actividad pro-apoptótica, es de esperar que tenga dos funciones significativas en el desarrollo y/o progresión tumoral. Primero, suprime el proceso de metástasis a través de la inhibición de la migración celular, y segundo, el efecto inhibidor de la motilidad de DAPK sería importante para suprimir los tumores que han escapado de la apoptosis inducida por la propia enzima. Así, las actividades anti-migratorias y pro-apoptóticas de DAPK podrían actuar para prevenir la malignidad durante las diferentes fases del desarrollo tumoral, ideas que se desarrollarán más adelante (Ivanovska et al., 2014).

En el esfuerzo por construir el interactoma común entre todos los mecanismos de muerte, la proteína DAPK podría jugar un papel clave al participar en todos ellos (Nikoletopoulou et al., 2013), por lo que conocer su implicación ampliaría nuestro entendimiento en este campo y nos permitiría establecer nuevas dianas terapéuticas en el tratamiento del cáncer así como descubrir fármacos más selectivos que actúen de forma dirigida y específica sobre un determinado eslabón de la compleja cadena que constituye el sistema de muerte celular programada.
4. DAPK1 y su implicación en cáncer

La función principal de la DAPK es suprimir el crecimiento tumoral y la metástasis por incremento de la inducción de apoptosis

in vivo. Por consiguiente, la pérdida de expresión de la proteína ha sido relacionada con multitud de procesos de malignidad (cáncer de pulmón, carcinoma de células renales y de vejiga, carcinoma de cuello, linfomas, etc), que se han relacionado con la inmortalización celular y al desarrollo del propio cáncer (Kawaguchi et al., 2004).

Esta atenuación ha sido principalmente atribuida a fenómenos de hipermetilación de su región promotora, pero dado que la correlación entre los niveles de metilación y la expresión de proteína no siempre está presente, otros mecanismos adicionales pueden ser responsables de la función reducida de DAPK1 en ciertos tipos de cáncer. Por ejemplo, mecanismo dependientes de microRNA, pérdida de heterozigosidad o delecciones en homozigosidad pueden ser causa de la desregulación de DAPK1. Incluso su papel en rutas de activación del gen supresor de tumores p53 y su relación con la proteína anti-apoptótica Bcl-2 van a tener un importante papel en la progresión de muchos tipos de tumores (Benderska et al., 2012; Kawaguchi et al., 2004).

4.1. Procesos de metilación de ADN. Patrones de metilación del promotor de DAPK1

Las modificaciones epigenéticas son cambios heredables en la expresión génica que no requieren modificación en la secuencia de ADN. Los principales mecanismos de control epigenéticos en mamíferos son: metilación del ADN, modificación de histonas y silenciamiento mediante RNA de interferencia (Supic et al., 2013).

La clave de la modificación genética en mamíferos es la adición de grupos metilo al carbono en posición 5 de la citosina de las secuencias de dinucleótidos CpG. Éstas a veces se agrupan formando las denominadas “islas CpG”, asociadas a sitios de inicio de la transcripción génica. La hipermetilación de estas regiones conduce al silenciamiento de los genes supresores de tumores, causando su inactivación y por tanto la transformación maligna en diversos tipos de cáncer. La adición de los grupos metilo está catalizada por las metiltransferasas o DNMTs, y la sobreexpresión de éstas se ha asociado a múltiples cancéreos (Szyf, 2003).
El gen DAPK1 tiene una región en los primeros 525 nucleótidos de su cDNA con un alto porcentaje de islas CpG, donde también reside el sitio de inicio de la transcripción (Katzenellenbogen et al., 1999). Numerosos estudios han demostrado la parada transcripcional de DAPK por hipermetilación en multitud de cánceres (Figura 15) (Benderska and Schneider-Stock, 2014).

Esto ha llevado a establecer una correlación entre los datos clínicos y el patrón de metilación del promotor de DAPK, apareciendo distintos resultados. Primero, las células cancerígenas con metilación aberrante pueden ser menos sensibles a la radioterapia debido a que la inducción de apoptosis, inhibida en estas células, es un mecanismo importante de acción de varios agentes antitumorales (Brabender et al., 2009). La hipermetilación del promotor se ha asociado con una pobre prognosis en cáncer de pulmón y la pérdida de expresión con una reducida supervivencia en cáncer de mama, conduciendo a una mayor progresión del tumor y agresividad en la mayoría de los cánceres (revisado por (Benderska and Schneider-Stock, 2014)).

Figura 15. Metilación aberrante del promotor de DAPK en diferentes tipos de tumores. En rojo se indica el valor máximo de frecuencia de metilación del promotor presente en la literatura. El porcentaje mínimo de frecuencia de metilación o si se trata de un estudio único es representado en azul. Tomado de (Benderska and Schneider-Stock, 2014).
Por tanto, la desregulación de la expresión de DAPK y sus funciones pleiotrópicas en cáncer van a hacer de ella una diana importante para futuras terapias y tratamientos (Huang et al., 2014), pues recientes estudios han revelado que DAPK suprime la metástasis tumoral a través de al menos tres mecanismos funcionales diferentes (Figura 16) que engloban muchas de las dianas y procesos en los que DAPK está implicada y que ya han sido descritos anteriormente:

- **Incremento de la susceptibilidad de las células tumoriales a las señales de muerte:** por su relación con p53, a través de la inducción de p19ARF y por la inactivación de las integrinas, el aumento de ERK citoplasmático que bloquea las señales de supervivencia. Y por último y en respuesta a estrés oxidativo y la activación de PKD que induce necrosis independiente de caspasas. Así, DAPK podría ser un factor clave que sensibilice a las células tumoriales a la muerte inducida por estrés oxidativo, lo que podría contribuir al efecto anti-metastásico de DAPK (Figura 16) (revisado por (Chen et al., 2014).

- **Regulación de la motilidad celular y del citoesqueleto:** a través de su sustrato MLC II y de la inhibición de las integrinas, incrementando la contractibilidad y el ensamblaje de las fibras de estrés. Este efecto anti-migratorio de DAPK puede representar uno de los principales mecanismos supresores de metástasis (revisado por (Chen et al., 2014)).

- **Modulación del microambiente tumoral:** DAPK podría influir en la biología de células estromales, participando en la apoptosis de las células endoteliales a través de su relación con el receptor UNC5H2/B y su ligando Netrina-1 (Guenebeaud et al., 2010).
Figura 16. Mecanismos moleculares por los que DAPK suprime la metástasis. Tomado de (Chen et al., 2014).

Por tanto, DAPK1 va a tener múltiples dianas para ejercer un efecto supresor en varios pasos de la cascada de metástasis. Así, será importante descubrir cómo DAPK1 afecta a la colonización de las células tumorales en lugares secundarios y si la pérdida de la proteína se convierte en una ventaja selectiva a la colonización específica de órgano (Chen et al., 2014).

El futuro plantea diferentes estrategias terapéuticas basadas en la proteína DAPK1 y que proponen la eliminación de células diana a través de las funciones proapoptóticas de su actividad cinasa, la reconstitución de los niveles de proteínas en tumores con alto índice de metilación o la interferencia de los mecanismos de autoinhibición que generen una proteína constitutivamente activa (Bialik and Kimchi, 2004). Así, el desarrollo de compuestos de bajo peso molecular que impidan la autofosforilación de la ser308 o que bloqueen su unión con el dominio regulador de CaM, podrían desembocar en la activación de la proteína y por tanto en el desarrollo de una nueva estrategia terapéutica que tenga por objetivo potenciar las propiedades antitumorales de la proteína DAPK1.
II. OBJETIVOS
Las proteínas cinasas constituyen una importante diana terapéutica debido al papel central que ocupan en rutas de supervivencia, proliferación y muerte celular. La mayoría de estas dianas están siendo investigadas para el tratamiento del cáncer, lo que ha generado un considerable interés en desarrollar pequeñas moléculas inhibidoras que pueden modificar la actividad catalítica del enzima sin perturbar los otros dominios. Entre los inhibidores actuales de cinasas destacan los compuestos modificados o análogos de nucleótidos o nucleósidos como las purinas, que son pequeñas moléculas heterocíclicas que van a mostrar un mecanismo común de acción a todos los inhibidores de cinasas. Es de esperar por tanto, que las librerías de purinas con distintos sustituyentes se conviertan en una herramienta atractiva no sólo para el desarrollo de nuevos fármacos antitumorales sino para esclarecer las rutas moleculares implicadas en el cáncer.

Dado el interés en identificar nuevos compuestos inhibidores de cinasas implicadas en procesos tumorales que puedan constituir nuevas estrategias terapéuticas, abordamos los siguientes objetivos:

1. Analizar el posible efecto antiproliferativo de una colección de purinas polisustituidas en líneas tumorales humanas y evaluar su actividad sobre distintos linajes celulares.
2. Caracterizar los mecanismos y rutas bioquímicas involucradas en la inducción de muerte celular ejercida por el tratamiento con los compuestos derivados de purinas en líneas celulares de tumores hematopoyéticos.
3. Identificar la(s) diana(s) con las que los compuestos interactúan así como su grado de selectividad.
4. Caracterizar el mecanismo de acción por el que los compuestos inducen muerte celular por apoptosis en la línea leucémica T Jurkat.
5. Estudiar el efecto del tratamiento combinado de los compuestos análogos de purinas con drogas desmetilantes sobre la inducción de apoptosis en células resistentes a la monoterapia.
III. MATERIALES Y MÉTODOS
1. Líneas y cultivos celulares.

Las líneas celulares tumorales humanas: Jurkat (leucemia aguda de linfocitos T), K562 (eritroleucemia), U937 (linfoma histiocítico difuso), HeLa (adenocarcinoma de cérvix), HPB-ALL (leucemia linfocítica aguda T), CEM (leucemia linfoblástica aguda T), MDA-MB (carcinoma de mama), MOLT-4 (leucemia linfoblástica aguda T), SKBR3 (carcinoma de mama), Raji (leucemia linfoblástica crónica B) y Nawalma (linfoma de Burkitt) fueron cultivadas a su densidad óptima en medio RPMI-1640 (BioWhittaker, Lonza, Verviers, Belgium) suplementado al 10% con FBS descomplementado (Gibco, Invitrogen, Auckland, New Zealand), con glutamax (BioWhittaker) al 1% y con Penicilina/estreptomicina (BioWhittaker) al 1%. Las líneas celulares MCF7 (cáncer de mama), G361 (melanoma) y HCT116 (carcinoma colorrectal) se mantuvieron en medio de cultivo DMEM (Gibco-Invitrogen, Carlsbad, California, USA) suplementado al 10% con FBS descomplementado, glutamax al 1% y Penicilina/estreptomicina al 1%. La línea Sam30 se estableció a partir de linfocitos B procedentes de un paciente con el Síndrome de Wiskott-Aldrich transformados mediante infección con el virus de Epstein-Barr (EBV) y fue cultivada en medio Panserin (PAN Biotech, Aidenbach, Alemania) suplementado al 10% con FBS descomplementado, glutamax al 1% y Penicilina/estreptomicina al 1%. La línea de linfocitos T primarios NI procedentes de individuos sanos se estableció en nuestro laboratorio mediante aloestimulación periódica por el método previamente descrito (Molina et al., 1992).

2. Reactivos y anticuerpos

Todos los compuestos de la colección de purinas utilizados para el desarrollo de esta tesis fueron cedidos amablemente por los doctores Juan José Díaz Mochón y María José Pineda de las Infantas, pertenecientes al Centro Pfizer-Universidad de Granada-Junta de Andalucía de Génomica e Investigación Oncológica (GENYO) y al Departamento de Química Farmacéutica y Orgánica de la Universidad de Granada.

El curso de la reacción y las mezclas de los productos fueron monitorizados de forma rutinaria por cromatografía en capa fina (TLC) en sílica gel (Merck 60-200 mesh sílica gel). Los puntos de fusión fueron determinados mediante Stuart Scientific SMP3 y los espectros de RMN (Resonancia Magnética Nuclear) realizados en soluciones de
CDCl₃, CD₃OD con un aparato Varian Inova Unity (300 MHz) y Varian Direct Drive (125, 400 o 500 MHz). Los espectros de masas fueron obtenidos por electroespray (ES) utilizando el LCT Premier XE Micromass Instrument (Espectroscopía de masas de alta resolución).

Los anticuerpos primarios utilizados fueron los: monoclonal anti-Caspasa 8 obtenidos de Cell Diagnostica (Munster, Germany), monoclonal anti-caspasa 9 obtenido de R&D Systems (Minneapolis, MN). Los anticuerpos policlinal anti-DAPK1, monoclonal anti-phosphoDAPK1 (pSer³⁰⁸), monoclonal anti-actina β y monoclonal anti-tubulina α fueron obtenidos de Sigma-Aldrich (Sigma, St. Louis, MO).

3. Preparación de los compuestos y tratamientos utilizados

Los compuestos fueron preparados en distintos lotes a una concentración inicial de 100 mM, disueltos en DMSO. Para cada experimento, se preparó una dilución intermedia de compuesto a 20mM a 60°C durante 30 minutos, para evitar la formación de precipitados. Las distintas dosis de trabajo, 12.5, 25, 50, 100 y 200µM fueron disueltas en el medio específico de cada línea celular. La concentración máxima utilizada de DMSO en cultivo no fue superior al 1%, para evitar problemas de toxicidad. Las incubaciones con los compuestos variaban dependiendo del estudio realizado, siempre poniendo como control el DMSO a las mismas dosis utilizadas.

4. Medida de la proliferación celular mediante MTT

El ensayo colorimétrico del MTT o 3-[4-5 dimethylthiazol-2-7P]-2,5-diphenyl tetrazolium bromide (thiazolyl blue) es un ensayo de viabilidad celular basado en la transformación de la sal de tetrazolio a cristales de formazán por la enzima mitocondrial succinato deshidrogenasa en células viables (Mosmann, 1983). Es un método colorimétrico cuantitativo en el que el MTT (color amarillo) es reducido en las mitocondrias de las células metabólicamente activas, dando lugar a cristales de formazán (color morado) que es un producto insoluble en medio acuoso que se solubilizan permitiendo su cuantificación espectrofotométrica a 570 nm.

En el caso de líneas celulares adherentes, veinticuatro horas antes de la adición de los compuestos 50 µL de una suspensión celular, a una concentración de 10⁶
células/mL preparada en un medio de cultivo apropiado, fueron sembradas por cada pocillo de una placa de 96 pocillos. En el caso de las células en suspensión este plaqueado se procedió a realizar el mismo día del test. La colección de compuestos fue testada a cuatro concentraciones: 25, 50, 100 y 200 µM. Para ello, 50 µL de soluciones de los compuestos preparadas al doble de la concentración a testar fueron añadidos a los 50 µL de la suspensión celular alcanzándose un volumen final de 100 µL a la concentración correcta. Las placas se incubaron a 37° C, 5% de CO₂, durante 48 horas. Tras centrífugar a 1500 rpm durante 5 min, se eliminó el medio de los pocillos, se añadieron 100 µL/pocillo de MTT 0,5 mg/mL (Sigma, St. Louis, MO, USA) y se incubó la placa durante 3 horas a 37°C y oscuridad, añadiendo 200 µL/pocillo de isopropanol-HCl al 0.1% al final de la incubación. Los valores de absorbancia a 570 nm fueron medidos en el lector de placas MultiScan Ex (Thermo Scientific, Pierce Biotechnology, Rockford, IL, USA).

5. Estudio del ciclo celular por citometría de flujo

Las células fueron cultivadas en placas de 24 pocillos a una concentración de 250.000 células/pocillo en 500 µL y tratadas con los compuestos seleccionados previamente, a concentraciones crecientes de 25, 50, 100 y 200 µM durante 24 y 48 horas. Las células muertas (apoptóticas y necróticas) fueron detectadas en base a la tinción con ioduro de propidio (data sheet) siguiendo el protocolo descrito (Gong et al., 1994). Brevemente, las células tras los correspondientes tratamientos se recogieron y se lavaron con 2 ml de tampón salino (PBS, phosphate buffered saline) a 4°C y se fijaron con 100 µL de PBS y 900 µL de etanol al 70%, en hielo durante 5 minutos. Tras lavar con de PBS, se resuspendieron en 250 µL de PBS y otros 250 µL de una solución de extracción de ADN (Na₂HPO₄ 0.2M, C₆H₇O₇ 0.1M, PH 7.8) e incubaron a 37° C durante 10 minutos. Se eliminó el sobrenadante y se añadieron 200 µL de la solución de tinción [8 µL ioduro de propidio (1mg/mL) y 2 µL RNAsa 100 (µg/mL) data sheet], incubando las muestras durante 10 min a 37° C en oscuridad. La fluorescencia fue medida en el detector FL2 del citómetro FACScalibur (Becton Dickinson & Co., NJ, USA) y el análisis de la población sub-G1 (población de células muertas: necróticas y apoptóticas) se hizo utilizando el software Cell Quest (BD, Biosciences).
6. Determinación de la apoptosis celular mediante Anexina –V FLUOS y ioduro de propidio.

Otro método utilizado para la cuantificación de la muerte celular o apoptosis es mediante el uso de la técnica de citometría de flujo de doble tinción con ioduro de propidio y Anexina. La anexina es el nombre común de un grupo de proteínas celulares que se unen a fosfolípidos en presencia de calcio presentando una alta afinidad por la fosfatidilserina (PS). En fases tempranas de la apoptosis, cuando la membrana celular se altera, este fosfolípido de la membrana interna es traslocado a la cara externa pudiendo unirse a esta la Anexina-V. Así, la medida de Anexina-V FLUOS (Roche, Mannheim, Germany), es una prueba sensible de la PS expuesta en la cara externa de las células apoptóticas tempranas. En el caso de las células necróticas, que también exponen PS como resultado de la pérdida de integridad de la membrana, el ioduro de propidio es utilizado para unirse al ADN y distinguir así las células necróticas de las células apoptóticas teñidas exclusivamente con Anexina-V FLUOS.

Las células se resuspendieron en 100 µl de Binding Buffer (HEPES 10mM pH7.4, NaCl140mM, CaCl₂ 2.5mM) y 2.5 µl de Anexina-V-FLUOS (dilución 1/40). Tras incubar 20 minutos a 37°C y oscuridad, se añadió 10 µl/tubo de yoduro de propidio (10 µg/ml) en el momento de la adquisición. La medida de la fluorescencia se realizó con los detectores FL1 y FL2 del citómetro de flujo FACScalibur (Becton Dickinson & Co., NJ, USA) y los datos fueron analizados con el software FlowJo (TreeStar Inc. Ashland, OR, USA).

7. Determinación del potencial de membrana mitocondrial y la producción de especies reactivas del oxígeno (ROS)

En la medida del potencial de membrana (Ψm) se utilizó el catión lipofílico fluorescente 3,3′-dihexyloxocarbocianina iodo, DIOC₆ (Molecular Probes, Carlsbar, CA, USA), reactivo que se incorpora a la mitocondria en función del estado energético de la misma. Para medir la producción de anión superóxido utilizamos el compuesto hidroetidio/dihidroetidina, HE (Roche, Mannheim, Germany) que es permeable a las células y puede transferir electrones al radical O₂⁺ provocando la oxidación de la hidroetidina a etidio.

Las células se sembraron a una concentración de 250.000 cels/pocillo/mL en una placa de 24 pocillos y tras el tratamiento correspondiente, se lavaron con PBS y se
resuspendieron en 200 µl de solución de trabajo (DIOC6 10 nM y HE 2 µM), incubando 20 minutos en oscuridad, al 5% de CO₂ y 37° C. La medida de la fluorescencia se realizó con los detectores FL1 y FL2 del citómetro de flujo FACScalibur (Becton Dickinson & Co., NJ, USA). Los datos fueron analizados con el software FlowJo (TreeStar Inc. Ashland, OR, USA).

8. Inmunodetección de proteínas por Western blot

Las células control y tratadas fueron lavadas con PBS y los extractos citoplasmáticos de las distintas líneas celulares fueron obtenidos a partir de 10⁶ células utilizando el kit NE-PER Nuclear and cytoplasmic extraction reagents de Thermo Scientific (Pierce Biotechnology, Rockford, IL, USA) y siguiendo el protocolo descrito por el fabricante. Brevemente, se resuspendieron las células en 100 µl de solución CER I y tras incubar 10 minutos en hielo, se agregaron 5.5 µl de solución CER II, incubando otro minuto y centrifugando 5 minutos a 16.000xg. Todos los extractos de proteínas fueron cuantificados mediante el método de Bradford (Sigma, St. Louis, MO) antes de añadir el tampón de carga (Tris 2M pH6.8, urea 6M, B-mercaptoetanol 6%, azul de bromofenol 0.003% y SDS al 3%).

Las proteínas se separaron en geles SDS-PAGE (Bio-Rad) al 7.5%, 10% o 12% para las proteínas de bajo peso molecular y geles en gradiente 5-15% (Bio-Rad) para las de alto peso molecular, usando el sistema Mini Protean (Bio-Rad) durante 80 min a 140 voltios. Después fueron electro-transferidas a una membrana PVDF Hybond-P (Amersham, Buckinghamshire, UK) por transferencia semiseca empleando el sistema Trans-Blot (Bio-Rad) durante 50 min a 50mA.

La membrana se bloqueó durante 1-2 horas con una solución de PBS/Tween20 al 1% y 10% de leche desnatada en polvo a temperatura ambiente. Tras realizar tres lavados de 5 minutos con PBS/Tween20 al 10%, se incubó durante toda la noche con el anticuerpo frente a la proteína a detectar diluido en PBS/Tween20 con 1% de leche (solución de bloque).

Tras la incubación, se lavó la membrana con PBS/Tween20 al 10% y se incubó durante una hora con el correspondiente anticuerpo secundario, Igs de ratón o de conejo conjugados con peroxidasa de rábano (HRP) (Caltag, Burlingame, CA, USA)
preparado en solución de bloqueo. Después de realizar los últimos tres lavados con PBS/Tween20 al 10%, la membrana se reveló por quimioluminiscencia utilizando el reactivo ECL Prime Western Blotting Detection Kit (Amersham, GE Healthcare, UK) y un sistema de captura y análisis de imagen digital FUJIFILM LAS-4000 y analizadas con el programa Multi Gauge.

9. Ensayo enzimático in vitro basado en el P33

El ensayo enzimático in vitro fue realizado por la compañía Reaction Biology Corp. (Malvern, PA, USA) usando la plataforma de ensayo HotSpot (www.reactionbiology.com, Malvern, PA, USA) sobre un panel de 96 cinasas recombinantes. Brevebmente se preparó una solución de reacción [20 mM HEPES (pH 7.5), 10 mM MgCl\textsubscript{2}, 1 mM EGTA, 0.02% Brij35, 0.02 mg/mL BSA, 0.1 mM Na\textsubscript{3}VO\textsubscript{4}, 2 mM DTT, 1% DMSO] a la que se añadió el sustrato indicado, los cofactores, la cinasa específica y el P33-ATP (Perkin Elmer, Waltham MA) a una concentración final de 10 µM para iniciar la reacción, mezclando suavemente e incubando durante 120 min a temperatura ambiente. Después, las reacciones se dispersaron en gotas en un papel de filtro de intercambio iónico P81 (Whatman Inc., Piscataway, NJ) y se lavaron con ácido fosfórico al 0.75% para eliminar exceso de fosfato. Los datos de la actividad cinasa fueron expresados como el porcentaje de la actividad cinasa de la muestra testada comparada con la del vehículo de reacción (DMSO), tras eliminar el fondo derivado de las reacciones control que contenía enzima inactiva. Los valores de IC\textsubscript{50} y las curvas se obtuvieron usando el programa GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, USA).

10. Tratamiento con el inhibidor de la metilación 5-azacitidina

La línea tumoral humana Raji fue cultivada a una concentración de 106 células/mL en frascos de cultivo de 25cm y tratadas con el inhibidor de la metilación 5-azacitidina obtenido de Sigma-Aldrich (Sigma) a concentración 0.5 µM durante 24 horas. Tras ser lavadas y resuspendidas en medio completo, las células se mantuvieron en cultivo a 37 °C y 5% de CO\textsubscript{2} y a los 5, 7, 10, 12 y 15 días post-tratamiento se recogieron y se trataron con los compuestos 5e, 5i, 6a y 6d a las concentraciones correspondientes
durante 24 horas, para después medir la población celular sub-G1 mediante tinción con ioduro de propidio en el citómetro de flujo, como se describió anteriormente.
IV. RESULTADOS
1. Diseño y síntesis de una colección de compuestos derivados de purinas

Las purinas son uno de los heterociclos más ampliamente distribuidos por la naturaleza. Están formadas por dos anillos fusionados de 5 y 6 miembros que contienen nitrógeno y son el esqueleto del núcleo de bases nitrogenadas como la adenina y la guanina, bloques esenciales en la construcción de estructuras biológicas, por lo que se consideran esqueletos fundamentales para el desarrollo de nuevos fármacos.

El grupo liderado por los doctores María José Pineda de las Infantas y Juan José Díaz Mochón junto con otros colaboradores (Baraldi et al., 2002), obtuvieron una colección de compuestos de purinas polisustituidas a través de una novedosa ruta de síntesis en un sólo paso (Figura 1), partiendo de 4-alquilamino-5-amino-6-cloropirimidinas, alcóxidos primarios y N,N-dimetilformamida o bien N,N-dimetilacetamida, a la que se denominó Ruta A.

![Figura 1. Ruta A de síntesis de los compuestos análogos de purinas.](image_url)

Los aniones alcóxido se formaron en exceso por reacción del hidruro sódico y los correspondientes alcoholes primarios. Los autores propusieron que la especie reactiva (alcoxiiminio 3), se generó in situ por reacción entre la amida (1) y el alcóxido (2), lo que condujo a los análogos de purina polisustituidas con H o con metilo en el carbono 8 (C-8), dependiendo de la amida empleada. Purinas polisustituidas (5), partiendo de 4-alquilamino-5-amino-6-cloropirimidinas (4), alcóxidos primarios (2) y N,N-dimetilformamida o bien N,N-dimetilacetamida (1).
Motivados por las potenciales propiedades farmacológicas de estos compuestos y siguiendo el mismo procedimiento, se diseñaron recientemente las purinas denominadas tipo 5 y tipo 6, descritas en la figura 2. La novedad de esta ruta es que mediante esta estrategia sintética es posible introducir simultáneamente dos diferentes sustituyentes en las posiciones 6 y 8 del anillo de purina y por tanto en un solo paso producir la reacción de ciclación y la introducción de los radicales que darán lugar a la colección, que consiste en un total de 18 compuestos pertenecientes a la familia 5 (sintetizados por la ruta A) y a 4 compuestos de la familia 6, sintetizados por la ruta B. De entre estos últimos, el 6d representa la optimización del compuesto líder identificado en los resultados obtenidos en el cribado de la colección.

Figura 2. Panel de purinas polisustituidas. Después de la purificación y la caracterización, los productos se clasificaron en dos categorías: purinas de tipo A, que contienen un sustituyente en C-8 (R1) derivado de la amida utilizada, y purinas tipo B, con el sustituyente en C-8 (R2) derivado del alcohol.

2. Los compuestos derivados de purinas muestran actividad antiproliferativa en líneas tumorales humanas

La mayoría de las vías de transducción de señales están mediadas por proteínas cinasas, por lo que una función aberrante de éstas conduce a la proliferación de células cancerígenas, a un incremento de la angiogénesis y al crecimiento de tumores sólidos. El estudio de estas cinasas por pequeñas moléculas es ya una herramienta muy atractiva tanto
para desarrollar nuevos fármacos antitumorales como para estudiar otras rutas moleculares implicadas en el cáncer (Xi et al., 2013).

En los últimos años, los derivados de purinas han constituido una importante clase de compuestos farmacológicos activos frente a diferentes dianas implicadas en cáncer y otras enfermedades. Por tanto, decidimos estudiar si la colección de compuestos derivados de purinas presentaría actividad antiproliferativa en las líneas tumorales humanas Jurkat y K562. Para ello, se trataron las líneas indicadas con el panel de compuestos a las concentraciones siguientes: 50 µM, 100 µM y 200 µM. Tras 48 horas de tratamiento, se determinó la viabilidad celular mediante el ensayo colorimétrico del MTT. Como se observa en las figuras 3 y 4, los compuestos 5e, 5i y 6a presentaron porcentajes de inhibición de la proliferación superiores al 50% a las dosis de 100 y 200 µM en células T Jurkat (Figura 3). Aunque las células eritroides K562 (Figura 4) fueron significativamente más resistentes al efecto antiproliferativo de los compuestos estudiados, los compuestos 5e, 5i y 6ª también inhibieron la proliferación por encima de un 50% a las dosis de 100 y 200 µM.

Figura 3. Inhibición de la proliferación de los compuestos derivados de purinas en células T leucémicas Jurkat. Las células fueron incubadas con los compuestos a las concentraciones de 50 µM, 100 µM y 200 µM durante 48h. La proliferación fue medida por el método colorimétrico MTT y los valores de absorbancia a 570 nm obtenidos en el lector de placas. Los porcentajes de inhibición están calculado sobre los valores obtenidos con las células no tratadas y corrigiendo el efecto inespecífico de la cantidad de DMSO contenido en cada muestra.
Las células fueron incubadas con los compuestos a las concentraciones de 50 µM, 100 µM y 200 µM durante 48h. La proliferación fue medida por el método colorimétrico MTT y los valores de absorbancia a 570 nm obtenidos en el lector de placas. Los porcentajes de inhibición están calculado sobre los valores obtenidos con las células no tratadas y corrigiendo el efecto inespecífico de la cantidad de DMSO contenido en cada muestra.

En base a los resultados obtenidos, se seleccionaron para un estudio más detallado los compuestos que habían inhibido como mínimo el 50% de la proliferación de las células Jurkat a la dosis de 100 µM, calculado sobre los valores de las células no tratadas. Los tres compuestos seleccionados, 5e, 5i y 6a contienen en su estructura un grupo benzoxy en la posición 6 del anillo de purina (figura 5).
Para establecer los correspondientes valores de IC50, es decir, la concentración mínima de compuesto a la que se produce una inhibición de la proliferación del 50%, se trataron las células Jurkat y K562 con los compuestos a concentraciones decrecientes desde 1.6mM hasta 1.6nM (tabla 1).

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Jurkat (µM)</th>
<th>K562 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5e</td>
<td>205</td>
<td>>500</td>
</tr>
<tr>
<td>5i</td>
<td>152</td>
<td>>500</td>
</tr>
<tr>
<td>6a</td>
<td>63</td>
<td>154</td>
</tr>
</tbody>
</table>

Tabla 1. Valores de IC50 de los compuestos seleccionados por inhibición de la proliferación. Las células Jurkat y K562 fueron incubadas con 10 dosis de cada compuesto, desde 1.6mM hasta 1.6nM, mediante diluciones seriadas 1:2. Tras 48 horas en cultivo se calculó el valor de IC50 utilizando el método colorimétrico MTT. Se realizaron tres réplicas para cada concentración y los experimentos fueron repetidos al menos tres veces. Los valores de IC50 se definieron como la concentración del fármaco requerida para disminuir la fluorescencia emitida en un 50% y fueron calculados usando el GraphPad Prism5.

3. Los derivados de purinas inhiben la proliferación celular a través de la inducción de muerte por apoptosis

Los nucleótidos y nucleósidos endógenos están involucrados en varios procesos celulares como son la síntesis de DNA y RNA, la señalización celular, la regulación enzimática, el metabolismo y la proliferación celular. Al ser análogos de los propios metabolitos celulares van a actuar como miméticos de sus propios homólogos (Jordheim et al., 2013).

3.1. Los derivados de purinas inducen muerte celular en células leucémicas

Para analizar si la inhibición de la proliferación ejercida por los compuestos 5e, 5i y 6a era debida a un proceso de inducción de muerte celular, se analizó el efecto de los compuestos en el ciclo celular en las líneas afectadas. Se trató a las células Jurkat y K562 con los tres compuestos a las concentraciones testadas de 50µM, 100µM y 200µM y tras 24 de incubación los compuestos indujeron un porcentaje de muerte en las células Jurkat del 30% a la dosis de 50µM para el compuesto 6a y a las dosis de 200µM para los compuestos 5e y 5i, porcentajes que incrementaron a las 48 horas de tratamiento (figuras 6 y 7).
Figura 5. Inducción de muerte celular por los compuestos en células T leucémicas Jurkat a las 24 horas. Las células Jurkat fueron tratadas con los compuestos a las dosis indicadas durante 24h, al igual que con los controles equivalentes de DMSO. Los ciclos celulares fueron analizados por citometría de flujo y los porcentajes de células obtenidos en base al pico de Sub-G1 (células apoptóticas y necróticas). Los experimentos fueron repetidos al menos tres veces, y la imagen muestra el más representativo. En el gráfico las barras de error son el resultado de tres réplicas del experimento.

Figura 6. Inducción de muerte celular por los compuestos en células T leucémicas Jurkat a las 48 horas. Las células Jurkat fueron tratadas con los compuestos a las dosis indicadas durante 24h, al igual que con los controles equivalentes de DMSO. Los ciclos celulares fueron analizados por citometría de flujo y los porcentajes de células obtenidos en base al pico de Sub-G1 (células apoptóticas y necróticas). Los experimentos fueron repetidos al menos tres veces, y la imagen muestra el más representativo. En el gráfico las barras de error son el resultado de tres réplicas del experimento.
En el caso de la línea de leucemia eritroblastoide K562 no se vio afectada a las 24 horas de tratamiento (datos no mostrados) y sólo el compuesto 6a fue capaz de inducir un 69% de células en Sub-G1 a la dosis de 100µM, aumentando hasta el 82% a la concentración de 200µM tras 48 horas de tratamiento (Figura 7).

Figura 7. Inducción de muerte celular por los compuestos en células eritroblastoides K562 a las 48 horas. Las células K562 fueron tratadas con los compuestos a las dosis indicadas durante 48h, al igual que con los controles de DMSO. Los ciclos celulares fueron analizados por citometría de flujo y los porcentajes de células obtenidos en base al pico de Sub-G1 (células apoptóticas y necróticas). Los experimentos fueron repetidos al menos tres veces, y la imagen muestra el más representativo. En el gráfico las barras de error son el resultado de tres réplicas del experimento.

3.2. Los compuestos derivados de purinas inducen muerte celular dependiente de cspasas

Las caspasas son los principales componentes en la cascada de activación del proceso apoptótico. Son expresadas como proenzimas inactivas, pasando a enzimas activas tras la rotura proteolítica por otras caspasas predecesoras en una mecanismo en cascada que culminará con todos los eventos propios de la apoptosis (McIlwain et al., 2013). Así, las caspasas iniciadoras 8 y 9 van a activar a las caspasas efectoras 3,6 y 7 en una fase inicial del proceso, por lo que la aparición de productos de degradación de las caspasas 8 y 9 va a indicar que el proceso de apoptosis celular ha comenzado.

Para conocer si los compuestos estaban induciendo muerte celular a través de un mecanismo de apoptosis dependiente de caspasas, tratamos las células Jurkat con los
compuestos 5e, 6a y cantidades equivalentes de DMSO como control, a la dosis de 200µM y a tiempos cortos de incubación de 5, 6 y 7 horas, comprobando que ambos compuestos estaban induciendo el corte y activación de las caspasas pero no así en los controles de DMSO ni en las células sin tratar (figura 8).

Figura 8. Los compuestos 5e y 6a inducen activación de las caspasas 8 y 9 en células Jurkat. Las células Jurkat fueron tratadas con los compuestos 5e y 6a y cantidades equivalentes de DMSO como control, a la dosis de 200µM durante 5, 6 y 7 horas. Los lisados totales de las células Jurkat fueron analizados por Western blot utilizando los anticuerpos específicos frente a las caspasas 8 y 9. Los fragmentos observados son el resultado del procesamiento de ambas proteínas: caspasa-8 (43-41 kDa) y caspasa-9 (37-35 kDa), utilizando como control de carga la actina. El tratamiento con etopósido fue utilizado como control positivo.

4. Síntesis y evaluación biológica de un nuevo compuesto derivado de purinas

4.1. Estudio del efecto del compuesto 6d en la proliferación y la viabilidad celular en células tumorales humanas

En base a los efectos biológicos mostrados por ambos grupos de compuestos, 5 y 6 y tras comprobar el potente efecto inductor de muerte en células tumorales Jurkat del compuesto 6a, nos propusimos optimizar el compuesto líder con el objeto de mejorar su solubilidad y sus propiedades biológicas.

Así, el equipo liderado por los doctores Díaz y Pineda de Las Infantas diseñó un nuevo compuesto derivado del 6a, sintetizado mediante las condiciones de reacción de la ruta B, el compuesto 6d (Figura 9), que presentó similares propiedades químicas que el compuesto 6a pero una solubilidad mejorada, debida a la presencia de un nuevo grupo tert-butilo en la posición 9 del anillo de purina. La mejora de la solubilidad quedó patente en el perfil de la curva para determinar la IC$_{50}$ (figura 10.B).
Figura 9. Estructura química del nuevo compuesto 6d. Su síntesis se hizo a partir del compuesto 6a añadiendo un grupo tert-butilo como radical 3 (R3).

Para determinar la actividad antiproliferativa del nuevo compuesto, las células Jurkat y K562 fueron tratadas con el compuesto 6d a las concentraciones de 50µM, 100µM y 200µM durante 48h, comprobando que inhibía la proliferación más del 50% a la concentración de 50µM, alcanzando el 100% a la concentración de 100µM en células Jurkat tras 48h de tratamiento. En células K562 se observó el mismo efecto a la dosis de 100µM (figura 10.A).

Para conocer el valor de IC$_{50}$ del nuevo compuesto, se realizó un ensayo de proliferación celular. Las células Jurkat y K562 fueron tratadas con 10 dosis distintas de compuesto, desde 1.6mM hasta 1.6nM, estableciendo diluciones seriadas 1:2. Tras 48 horas en cultivo se midieron los valores de absorbancia y se estableció el valor de IC$_{50}$ a partir de las células control sin tratar, que fueron de 29µM y 120µM, en células Jurkat y K562, respectivamente (Figura 10.B).

Figura 10. Efecto del compuesto 6d en la inhibición de la proliferación y en la viabilidad celular. A. Las células Jurkat y K562 fueron tratadas con los compuestos a las dosis indicadas durante 48h y con cantidades equivalentes de DMSO. Los ciclos celulares fueron analizados por citometría de flujo y los porcentajes de células obtenidos en base al pico de Sub-G1 (células apoptóticas y necróticas). Los experimentos fueron repetidos al menos tres veces y en el gráfico las barras de error son el resultado de tres réplicas del experimento. B. Para la IC50 del compuesto 6d se trataron las células Jurkat a 10 dosis distintas de compuesto, desde 1.6mM hasta 1.6nM estableciendo diluciones seriadas 1:2. Tras 48 horas en cultivo se calculó el valor de IC50 utilizando el método colorimétrico MTT. Se realizaron tres réplicas para cada concentración y los experimentos fueron repetidos al menos tres veces. Para el cálculo se usó el GraphPad Prism5.
4.2. El compuesto 6d presenta un potente efecto inductor de muerte en células tumorales humanas

Al igual que con los compuestos anteriores, quisimos estudiar el efecto del compuesto 6d en el ciclo celular de las células T tumorales Jurkat y eritroblastoides K562. Para ello, ambas líneas fueron cultivadas en presencia del compuesto a concentraciones de 25µM, 50µM, 100µM y 200µM durante 24 y 48h. Tal y como muestra la figura 11, el compuesto 6d a la dosis de 100 µM induce en células Jurkat un 74% de muerte celular tras 24h y un 86% a las 48h.

De igual modo, el compuesto 6d indujo en la línea K562 un porcentaje de muerte casi del 50% a la dosis de 50 µM y del 92% a 100 µM tras 48h de tratamiento (figura 12).
Se evaluó también si el compuesto 6d era capaz de activar, al igual que su molécula parental, a las caspasas iniciadoras 8 y 9. Para ello tratamos las células Jurkat con el compuesto a la dosis de 200µM y a tiempos cortos de incubación de 5, 6 y 7 horas, comprobando que nuevamente se inducía el corte y activación de las caspasas, que sin embargo no era observado ni en los controles de DMSO ni en las células sin tratar con el compuesto 6d (Figura 13).

Figura 13. Activación de las caspasas 8 y 9 tras el tratamiento con el compuesto 6d. Las células Jurkat fueron tratadas con el compuesto 6d y DMSO como control, a la dosis de 200µM durante 5, 6 y 7 horas. Los lisados totales de las células Jurkat fueron analizados por Western blot utilizando los anticuerpos específicos frente a las caspasas 8 y 9. Los fragmentos observados son el resultado del procesamiento de ambas proteínas: caspasa-8 (43-41 kDa) y caspasa-9 (37-35 kDa), utilizando como control de carga la actina.

5. Estudio de los mecanismos inductores de muerte celular de los compuestos en células tumurales humanas

5.1. Los compuestos presentan mayor selectividad frente a líneas derivadas de tumores hematopoyéticos

Para establecer el posible rango de actuación que los compuestos derivados de purinas 5e, 5i, 6a y 6d podían tener tanto en líneas tumurales hematopoyéticas como en otro tipo de cánceres, analizamos un panel de 13 líneas tumurales que incluían líneas de leucemias tipo B y T, cáncer de colon, cérvice, mama, melanoma y células inmortalizadas in vitro (tabla 2).

<table>
<thead>
<tr>
<th>Líneas tumurales humanas</th>
<th>Línea celular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo celular</td>
<td>Línea celular</td>
</tr>
<tr>
<td>Leucemias tipo T</td>
<td>CEM</td>
</tr>
<tr>
<td>Leucemias tipo B</td>
<td>Raji</td>
</tr>
<tr>
<td>Leucemias promielocíticas</td>
<td>U937</td>
</tr>
<tr>
<td>Leucemias mielogénicas</td>
<td>K562</td>
</tr>
<tr>
<td>Cáncer de mama</td>
<td>SKBr3</td>
</tr>
<tr>
<td></td>
<td>MDA-MB231</td>
</tr>
<tr>
<td></td>
<td>MCF-7</td>
</tr>
</tbody>
</table>
Tabla 2. Líneas tumorales humanas utilizadas. Todas las líneas fueron obtenidas de repositorios celulares, excepto la línea de linfocitos B inmortalizados Sam 30, que se estableció a partir de linfocitos B procedentes de un paciente con el Síndrome de Wiskott-Aldrich transformados mediante infección con el virus de Epstein-Barr (EBV).

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Línea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>G631</td>
</tr>
<tr>
<td>Cáncer de colon</td>
<td>HCT116</td>
</tr>
<tr>
<td>Carcinoma epitelial</td>
<td>HeLa</td>
</tr>
<tr>
<td>Linfocitos B inmortalizados</td>
<td>Sam 30</td>
</tr>
</tbody>
</table>

Tratamos todas las líneas con los compuestos a las dosis de 25µM, 50µM, 100µM y 200µM y tras 48h obtuvimos los datos de absorbancia y calculamos los valores de inhibición de la proliferación celular en cada una de las líneas tratadas con respecto a las células control sin tratar. Las células T Jurkat mostraron valores superiores al 50% de inhibición a la dosis intermedia de 50 µM con todos los compuestos, mientras que en las líneas CEM, HPB-ALL y MOLT-4, los valores de inhibición se redujeron excepto con el compuesto 6d, que mostró una inhibición del 100% a 50 µM. Las líneas Raji y Nawalma, ambas derivadas de leucemias tipo B mostraron un patrón de inhibición similar, en el que hubo un leve efecto con los compuestos 5i y 6a, y sólo el 6d fue capaz de inhibir el 100% a la dosis mayor. En la línea tumoral monocítica U937 nuevamente el compuesto 6d fue el único que inhibió totalmente la proliferación a 50µM y las células eritroleucémicas K562 presentaron una mayor resistencia a los compuestos, viéndose sólo afectadas por el compuesto 6d a la dosis más alta (Figura 14).

Como se muestra en la figura 15, todas las líneas derivadas de tumores no hematopoyéticos revelaron una mayor resistencia a los compuestos 5e, 5i y 6a. Tan sólo el compuesto 6d mostró valores de inhibición importantes, que alcanzaron el 100% en las células derivadas de cáncer de cérvix (HeLa), de cáncer de mama (MDA-MB) y melanoma (G361) a la dosis intermedia de 50 µM y de 100 µM para las células tumorales de mama (SKBR3 y MCF7). La línea Sam30, establecida a partir de linfocitos B procedentes de un paciente con el Síndrome de Wiskott-Aldrich transformados mediante infección con el virus de Epstein-Barr siguió un patrón de inhibición similar al del resto de líneas no hematopoyéticas y sólo el compuesto 6d fue capaz de inhibir la proliferación en un 100% a las dosis más altas. Por último, la línea derivada de cáncer de colon HCT116 sólo fue sensible a la mayor dosis del compuesto 6d, inhibiendo un 80% la proliferación celular.
Figura 14. Análisis de la inhibición de la proliferación en líneas derivadas de tumores hematopoyéticos. Las células fueron incubadas con los compuestos a las concentraciones de 50 µM, 100 µM y 200 µM durante 48h. La proliferación fue medida por el método colorimétrico MTT y los valores de absorbancia a 570 nm obtenidos en el lector de placas. Los porcentajes de inhibición están calculado sobre los valores obtenidos con las células no tratada y corrigiendo el efecto inespecífico de la cantidad de DMSO contenido en cada muestra. Las gráficas muestran la media de tres experimentos.
Figura 15. Análisis de la inhibición de la proliferación en líneas derivadas de tumores no hematopoyéticos. Las células fueron incubadas con los compuestos a las concentraciones de 50 µM, 100 µM y 200 µM durante 48h. La proliferación fue medida por el método colorimétrico MTT y los valores de absorbancia a 570 nm obtenidos en el lector de placas. Los porcentajes de inhibición están calculado sobre los valores obtenidos con las células no tratada y corrigiendo el efecto inespecífico de la cantidad de DMSO contenido en cada muestra. Las gráficas muestran la media de tres experimentos.
5.2. Los linfocitos T primarios presentan mayor resistencia a la inducción de muerte celular tras el tratamiento con los compuestos derivados de purinas

Para comprobar el efecto inductor de muerte en líneas de linfocitos T primarios humanos establecidos a partir de linfocitos de sangre periférica aloestimulados, se trató la línea T primaria N1 con los compuestos indicados a las dosis de 25, 50, 100 y 200 µM durante 24 y 48h. Como se muestra en la figura 16, estos compuestos exhiben una reducida capacidad de inducir muerte celular, destacando sólo el compuesto 6d, que provocó el 60% de muerte a las dosis más altas tras 48 horas de tratamiento (figura 16).

Figura 16. Efecto de los compuestos en el ciclo celular de linfocitos T primarios aloespecíficos. Los linfocitos T primarios fueron establecidos a partir de PBMCs aloestimulados. Tras el tratamiento con los compuestos a las dosis indicadas durante 24 y 48h, los ciclos celulares fueron analizados por citometría de flujo y los porcentajes de células obtenidos en base al pico de Sub-G1 (células apoptóticas y necróticas). Los experimentos fueron repetidos al menos tres veces. En el gráfico las barras de error son el resultado de tres réplicas del experimento.

5.3. Los compuestos análogos de purinas inducen apoptosis selectiva en células tumorales

La anexina es el nombre común de un grupo de proteínas celulares que se unen a fosfolípidos en presencia de calcio, presentando una alta afinidad por la fosfatidilserina (PS). En fases tempranas de la apoptosis, cuando la membrana celular se altera, este fosfolípido de la membrana interna es traslocado a la cara externa pudiendo unirse a la anexina.

Para descartar que el efecto inductor de muerte ejercido en células tumorales tras el tratamiento con los compuestos análogos de purinas fuese debido a otros mecanismos de muerte celular y dado que la medida de anexina-V es una prueba sensible de la inducción selectiva de apoptosis, decidimos estudiar el proceso apoptogénico desencadenado por los compuestos en células Jurkat.
Figura 17. Inducción de apoptosis en células T Jurkat tras el tratamiento. Las células Jurkat fueron tratadas a las dosis de 50, 100 y 200 µM durante 24, 48 y 72 horas. Tras la doble tinción Anexina-V-FLUOS y ióduro de propidio, el porcentaje de las células apoptóticas observado como el desplazamiento de la población anexina positivas fue medido en el citómetro de flujo. Se utilizó el etopósido como control positivo de inducción de muerte. La figura muestra el experimento más significativo, repetido al menos tres veces.
Tras el tratamiento de las células Jurkat con los cuatro compuestos a las dosis de 50, 100 y 200µM durante 24, 48 y 72 horas, todos los compuestos indujeron de forma específica apoptosis temprana en células Jurkat a las 24 horas de tratamiento, que culminó en apoptosis tardía a las 48 horas con el compuesto 6d y a las 72 horas con los compuestos restantes.

Al analizar estos resultados con respecto al tiempo y la dosis de tratamiento, apareció una clara tendencia de los compuestos 6a y 6d a la inducción de apoptosis a bajas dosis, no siendo así para los compuestos 5e y 5i, que necesitaron las mayores dosis para inducir el 50% de apoptosis.

Figura 18. Inducción de apoptosis dosis y tiempo dependientes tras el tratamiento con los compuestos en células Jurkat. Las gráficas muestran los valores de inducción de apoptosis obtenidos tras la doble tinción Anexina-V-FLUOS y iodo de propidio del experimento anterior. Los porcentajes han sido obtenidos sumando las células Anexina-V positivas (cuadrantes superior e inferior derecha) y corrigiendo el error del DMSO.

5.4. La sobreexpresión de proteínas anti-apoptóticas Bcl-2 y Bcl-X protege a las células T tumorales de la apoptosis inducida por los compuestos derivados de purinas

La ruta mitocondrial o intrínseca de la apoptosis va a ser iniciada por multitud de factores, daño al ADN, hipoxia, alta concentración de iones Ca$^{2+}$, estrés oxidativo o drogas citotóxicas, que van a resultar en un incremento de la permeabilidad de la mitocondria y en la
liberación de factores como las proteínas de la familia de Bcl-2, pro-apoptóticas (Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim y Hrk) y anti-apoptóticas (Bcl-2, Bcl-XL, Bcl-W, Bfl-1 y Mcl-1) (Wong, 2011).

La sobreexpresión de las proteínas anti-apoptóticas Bcl-2 y Bcl-x protege frente a la apoptosis desencadenada por dichos estímulos (Panaretakis et al., 2002). La función principal de ambas proteínas es impedir el desarrollo del proceso apoptogénico a través de la vía mitocondrial.

Para avanzar en el estudio de la participación de la vía mitocondrial en la inducción de apoptosis generada por los compuestos derivados de purinas en células Jurkat, se utilizaron líneas clonales de células T Jurkat que sobreexpresaban cantidades variables de las proteínas anti-apoptóticas Bcl-2 y Bcl-X (Figura 19.A), generadas previamente en nuestro laboratorio y se trataron como se indica en la figura 19.B. La sobreexpresión de las proteínas Bcl-2 y Bcl-x en células Jurkat sólo protege de la muerte por apoptosis inducida por los compuestos 5e, 5i y 6a en los clones que expresan mayores cantidades de Bcl-2 (L15) y Bcl-x (H15).
Figura 19. La sobreexpresión de Bcl-2 y Bcl-x protege a las células Jurkat de la apoptosis inducida por los compuestos derivados de purinas. A. Determinación de los niveles de expresión de Bcl-2 y Bcl-x en las células Jurkat trasfectadas con el vector vacío (pCDNA3.1), con el vector que porta la proteína Bcl-2 (D25, G10, H25 y L15) o de Bcl-x (H15) por Western blot. Los lisados fueron analizados con los correspondientes anticuerpos frente a Bcl-2 y Bcl-X.Las barras muestran el nivel de expresión de la proteína. B. Inducción de apoptosis de los compuestos en células que sobreexpresan proteínas anti-apoptóticas. Las células trasfectadas fueron tratadas con los compuestos a las dosis de 25, 50, 100 y 200 µM durante 48h y analizadas mediante tinción con iodo de propidio en el citómetro de flujo. Los valores de apoptosis corresponden con el porcentaje de células en Sub-G1 menos los correspondientes a los controles de DMSO.

5.5. Los compuestos inducen liberación de especies reactivas de oxígeno como resultado de la apoptosis en células T leucémicas

Además de la ruta extrínseca o dependiente de caspasas, existe otra ruta de inducción de apoptosis cuyo principal componente va a ser la mitocondria (Sankari et al., 2012). Uno de los primeros pasos en la apoptosis inducida como consecuencia del daño mitocondrial va a ser la permeabilización de la membrana mitoconcial externa (MME), que va a perturbar la integridad de las membranas mitocondriales, desencadenando una caída del \(\Delta \Psi_m \), la producción de especies reactivas del oxígeno (ROS) y liberación al citoplasma de factores pro-apoptóticos (Heath-Engel and Shore, 2006).

Para estudiar si los compuestos derivados de purinas estaban induciendo activación de la ruta mitocondrial de la apoptosis en células Jurkat, las tratamos con los compuestos a la dosis y tiempos indicados y medimos la caída del potencial de membrana \((\Delta \Psi_m) \) y la producción de ROS. Como se muestra en la figura 20, sólo los compuestos 5e y 6a provocaron una caída inicial de dicho potencial de membrana a las 48 horas de tratamiento mientras que se detectó producción de anión superoxido \((O_2^-) \) con todos los compuestos a las 24 y 48 horas.

Figura 20. Medida del potencial de membrana y de la liberación de ROS en células Jurkat. La línea tumoral Jurkat fue tratada con los cuatro compuestos a la dosis de 200 µM durante 24 y 48 horas, midiendo posteriormente la caída del potencial y la producción de ROS a través del catión lipofílico DIOC6 (FL1) y la sonda fluorescentes específica HE (FL2), respectivamente, por citometría de flujo. La figura muestra la cinética más representativa.
6. Los compuestos derivados de purinas inhiben la actividad catalítica de DAPK1

6.1. Identificación de las principales dianas de los compuestos derivados de purinas

Tras confirmar el efecto proapoptótico de los compuestos derivados de purinas 5e, 5i, 6a y 6d sobre células T Jurkat a través del estudio del ciclo celular, la activación de caspasas y la inducción de apoptosis, decidimos analizar las posibles dianas de acción de dichos compuestos.

Para ello se realizó un estudio enzimático in vitro (P33-radiolabeled kinase assay) frente a los cuatro compuestos estudiados, llevado a cabo por la compañía Reaction Biology Corp. Se analizaron 96 cinasas recombinantes (Anexo 1), con las que se realizó un perfil enzimático basado en la incorporación de P33-ATP, como se describió en materiales y métodos. Los compuestos fueron probados a distintas dosis a partir de 200 µM utilizando diluciones seriadas, del mismo modo que se hizo para determinar la IC\textsubscript{50} respecto a las enzimas DAPK1 y DAPK2 (datos no mostrados).

![Figura 20. Inhibición de la actividad enzimática con los compuestos 5e y 6a.](image)

El ensayo enzimático in vitro (in vitro kinase screening assay) fue realizado usando la plataforma de ensayo HotSpot sobre un panel de 96 cinasas recombinantes utilizando los compuestos a una dosis de 10 µM, como se especifica en materiales y métodos. En el eje horizontal se muestran las enzimas más significativas de las 96 que fueron estudiadas. Los datos de la actividad cinasa fueron expresados como el porcentaje de la actividad cinasa de la muestra testada comparada DMSO, tras eliminar el fondo derivado de las reacciones control que contenían la enzima inactiva. Los valores de IC\textsubscript{50} y las curvas se obtuvieron usando el programa GraphPad Prism (GraphPad Software, Inc. La Jolla, CA, USA).
El ensayo enzimático mostró una inhibición de la actividad cinasa superior al 50% en la Proteína Asociada a Muerte (Death Associated Protein Kinase-1) o DAPK1, que presentó un porcentaje de actividad sólo del 50.9% y del 44.3% cuando se incubó con 5e y 6a, respectivamente. Del mismo modo se realizó el estudio con los compuestos 5i y 6d (datos no mostrados), obteniendo los mismos resultados.

6.2. Los derivados de purinas inducen apoptosis inhibiendo específicamente la autofosforilación de DAPK1 en células tumorales Jurkat

La proteína cinasa asociada a muerte o DAPK1 (Death-associated Protein Kinase 1), es una serina/treonina cinasa (Ser/Thr quinasa) regulada por Ca\(^{2+}\)/calmodulina (Ca\(^{2+}\)/CaM) que media muerte celular por incremento de su actividad. Su dominio catalítico incluye el dominio cinasa, común a todos los miembros de la familia y contiene el sitio de unión al sustrato y el dominio autoinhibitorio de unión a CaM, clave para la regulación de la actividad del enzima (Bialik and Kimchi, 2006; Lin et al., 2010). Este dominio de autorregulación/unión a Ca\(^{2+}\)/calmodulina, presenta una estructura en lazo que bloquea e impide la actividad catalítica de la enzima, funcionando como un pseudosustrato (ver figura 10 de la introducción). Éste dominio va a sufrir la autofosforilación de la Serina 308 (Ser308), un evento autoinhibitorio que ocurre en estado basal, manteniendo a la enzima en un estado inactivo (Bialik and Kimchi, 2006; Shohat et al., 2001; Shiloh et al., 2014).

Dado que el ensayo de cinasas reveló la inhibición específica de la actividad catalítica de la DAPK-1, abordamos el estudio del mecanismo por el que los compuestos estaban inhibiendo a dicha proteína e induciendo apoptosis en células tumorales. Se caracterizó el estado de fosforilación-defosforilación de la proteína tras el tratamiento en células tumorales T Jurkat con los cuatro compuestos. Tras medir el porcentaje de apoptosis en células Jurkat (figura 21.A), se cuantificó el estado de fosforilación de la proteína a la dosis de 100 µM para los compuestos 5e y 5i y a 50 µM para el 6a y el 6d. Como muestra el análisis de la proteína por western blot (Figura 21.B), los compuestos inhibieron la autofosforilación de la ser308, en especial los compuestos 6a y 6d, que además, disminuyeron discretamente la cantidad de proteína DAPK1 total en células Jurkat.
6.3. El tratamiento con inhibidores de la metilación restaura la expresión de proteína DAPK-1 y potencia el efecto inductor de apoptosis de los compuestos en células B tumorales

Numerosos estudios han demostrado la disminución de la transcripción de la proteína DAPK1 por procesos de hipermetilación en cáncer (Benderska and Schneider-Stock, 2014). La leucemia linfocítica crónica (CLL) es uno de los tipos más comunes de leucemias adultas y actualmente no presenta ningún tratamiento efectivo (Raval et al., 2007).

Aunque la heredabilidad de la CLL es muy alta, no existen hasta la fecha genes relacionados, lo que ha llevado al estudio masivo de las aberraciones epigenéticas presentes en los análisis de metilación de ADN de muestras de pacientes con CLL, revelando que existen casi 200 genes que están siendo silenciados epigenéticamente en las leucemias linfocíticas crónicas (Raval et al., 2007) y que DAPK1 está virtualmente silenciada en casi la totalidad de los casos estudiados de CLL esporádica (Raval et al., 2007).
Para comprobar la selectividad de los compuestos frente a la proteína DAPK1 y estudiar las modificaciones en la inducción de apoptosis que estos podrían tener tras el tratamiento con agentes desmetilantes en células tumorales Raji, tratamos previamente la línea celular con el inhibidor de DNA-metiltransferasas o Dnmt, 5-azacitidina, del que se ha demostrado que restaura la expresión de DAPK-1 (Raval et al., 2007), e incubamos las células tratadas con los compuestos a los días 5, 7, 10, 12 y 14 post-tratamiento, tras lo cual cuantificamos el porcentaje de muerte celular por citometría de flujo.

Tal y como muestra la figura 22, mientras que en las células no tratadas con el inhibidor de la metilación no existe ningún efecto inductor de muerte, a los 5 días post-tratamiento comenzamos a detectar porcentajes de muerte del 40 y el 50% para los compuestos 6a y 6d, continuándose hasta el día 12, donde empieza a disminuir la inducción de muerte.

Figura 22. Cinética de inducción de apoptosis en células Raji tratadas de forma combinada con 5-azacitidina y los compuestos derivados de purinas. Las células Raji fueron preincubadas durante 24h con el inhibidor de la DNMT 5-azacitidina a la concentración de 0.5 µM, tras lo cual las células fueron lavadas y mantenidas en cultivo durante los días indicados, en los que se fueron tratando con los compuestos 5e, 5i, 6a y 6d a las concentraciones de 50, 100 y 200 µM. A las 24 horas y tras teñir con iodo de propidio, se midieron los porcentajes de Sub-G1 en el citómetro de flujo. Los datos mostrados son el resultado de la media de los dos experimentos y se ha sustraído el valor del DMSO.
V. DISCUSIÓN
El genoma humano comprende más de 500 proteínas cinasas que incluyen serina/treonina cinasas, tirosina cinasas y otras cinasas con actividad dual. Dado el importante papel fisiológico y patológico de estas enzimas, el estudio del quinoma humano representa una de las mejores oportunidades para descubrir nuevos fármacos frente al cáncer u otras áreas terapéuticas como la inflamación, las enfermedades autoinmunes o los desórdenes metabólicos (Zuccotto et al., 2010). Así, las cinasas se han convertido en una de las dianas más buscadas para el desarrollo de nuevos fármacos, con aproximadamente 30 dianas de cinasas distintas que están siendo desarrolladas en ensayos clínicos en Fase I (Zhang et al., 2009).

La mayoría de los procesos de transducción de señales están conectados a través de cascadas de fosfotransferencia, sugiriendo que la inhibición de la actividad cinasa puede provocar una respuesta fisiológica real (Zhang et al., 2009). Mientras que la fosforilación proteica representa un paso clave en procesos como la proliferación celular, la diferenciación y la apoptosis, el descubrimiento de pequeñas moléculas inhibidoras de cinasas ha atraído el interés para investigar y desarrollar así como identificar las herramientas experimentales necesarias para el entendimiento de los papeles biológicos de estas proteínas. La posibilidad de controlar la proliferación celular y la muerte por inhibición específica de una cinasa diana, ofrece la oportunidad de introducir el concepto de Terapias diana en el tratamiento del cáncer, proporcionando una alternativa válida a la quimioterapia convencional (Zuccotto et al., 2010).

Los nucleósidos y nucleótidos son compuestos endógenos involucrados en varios procesos celulares como la síntesis de ADN y ARN, la señalización celular, la regulación enzimática y el metabolismo. Así, los análogos de nucleósidos y nucleótidos son compuestos modificados químicamente que van a mimetizar a sus homólogos fisiológicos, inhibiendo enzimas esenciales celulares. Desde la aprobación de la citalarabina para el tratamiento de la leucemia mieloide aguda y de la edoxudina como agente antiviral en1996 por la FDA, numerosos análogos de nucleósidos han sido sintetizados y evaluados para el tratamiento de cáncer, hepatitis, VIH e infecciones por herpesvirus (Jordheim et al., 2013).

En este estudio hemos analizado la capacidad antitumoral de un panel de 18 compuestos derivados de purinas poli-sustituidas, seleccionando aquellos compuestos que han mostrado una capacidad de inhibir la proliferación celular superior al 50% en células tumorales T Jurkat y células eritroleúcémicas K562. Estos compuestos, denominados 5e, 5i, 6a y 6d, son derivados de la base purina con distintos grupos sustituidos en las posiciones 6, 8 y 9, lo que les va a conferir un mayor o menor efecto antiproliferativo y unas propiedades de solubilidad...
que van a depender del radical que lleve unido el anillo purina. Todos tienen un grupo benzoxi
en la posición 6 pero los compuestos 6a y 6d presentan un efecto antiproliferativo en células
Jurkat y K562 mucho más potente que los otros, ya que la incorporación del grupo terc-butilo
al compuesto 6d lo dota de una potente actividad antiproliferativa y una mejorada solubilidad.

Estos compuestos no sólo exhibieron el mayor índice de inhibición de la proliferación,
sino que tras el estudio de las poblaciones en fase sub-G1 del ciclo celular y la expresión de
anexina-V hemos podido confirmar que la muerte celular en líneas tumurales T y
eritroblastosoides es debida a un proceso específico de inducción de apoptosis y no de necrosis.
Además, esta apoptosis va a ser dependiente de caspasas, como reveló la aparición de
productos de degradación resultantes de la activación de las caspasas iniciadoras 8 y 9 tras el
tratamiento con los compuestos.

Muchos de los compuestos análogos de purinas, como la citarabina o la fludarabina
han sido utilizados en clínica como agentes activos frente a tumores hematopoyéticos pero no
han mostrado efecto en tumores sólidos (Jordheim et al., 2013). Por ello, quisimos saber cuál
era el rango de acción de los compuestos seleccionados no sólo en líneas derivadas de
tumores hematopoyéticos, sino también en líneas tumorales de piel, cérvix, mama y colon,
comprobando que, aunque el efecto antiproliferativo de los cuatro compuestos era
especialmente patente en las líneas derivadas de tumores hematopoyéticos, el compuesto 6d
mostró un potente efecto inhibidor de la proliferación en las líneas derivadas de cáncer de
mama, cérvix y piel.

Por otro lado, el efecto regulado que los compuestos ejercen en células tumorales T
que sobreexpresaron las proteínas anti-apoptóticas Bcl-2 y Bcl-x, demuestra que la apoptosis
can ser también desencadenada a través de un proceso de activación de la ruta
mitocondrial o intrínseca, pues se sabe que las proteínas de la familia Bcl-2 participan en la
regulación de la apoptosis a través del control de la permeabilidad mitocondrial y la
sobreexpresión de éstas provoca una inhibición del proceso de apoptosis, aunque la ruta
específica debería ser confirmada mediante el uso de inhibidores específicos de las proteínas
implicadas en las rutas, como por ejemplo, la proteína proapoptótica Bid, iniciadora de la ruta
mitocondrial. Sin embargo, deberíamos destacar que a pesar de que el efecto proapoptótico
que muestran los compuestos se ve reducido tras la sobreexpresión de las proteínas Bcl-2 y
Bcl-x, los compuestos 6a y 6d mostraron unos niveles de inducción de apoptosis de
aproximadamente el 60% en estos clones a las dosis más elevadas y, dado que una expresión
incrementada de Bcl-2 conduce a una mayor resistencia a las drogas quimioterápicas actuales e incluso a la radioterapia (Ouyang et al., 2012), el efecto proapoptótico que presenta los compuestos 6a y 6d en líneas tumorales que sobreexpresan Bcl-2 los convierten en una prometedora terapia para este tipo de cánceres.

Se ha descrito que las ROS actúan como mediadores bioquímicos del proceso apoptótico y numerosas drogas inducen apoptosis en distintos sistemas, al menos parcialmente, a través de la producción de las mismas, especialmente O_2^- y H_2O_2 (Circu and Aw, 2010). Aunque la permeabilización de la MME es un evento temprano y crucial en la apoptosis vía mitocondria, la disipación del $\Delta \Psi m$ puede tener lugar antes, durante o ser consecuencia de dicha permeabilización y la interrupción del transporte electrónico (Green and Reed, 1998). Nuestros compuestos indujeron un claro incremento en la producción de O_2^- que estuvo acompañada por una leve despolarización de la MME, excepto el compuesto 6d, que no provocó este último efecto, lo que podría indicar nuevamente que el potente efecto provocado por este compuesto puede ser debido a la participación de otros mecanismos inductores de muerte además del de apoptosis.

Los análogos de nucleósidos y nucleótidos pueden interactuar e inhibir enzimas esenciales como cinasas, polimerasas, metiltransferasas, etc (Jordheim et al., 2013). La mayoría de estos compuestos inhibidores de cinasas actúan a nivel del sitio de unión del ATP en el dominio de activación del enzima, modificando su conformación de activa a inactiva o viceversa. Dado el alto grado de conservación del sitio de unión del ATP, estas moléculas van a ser altamente selectivas y con unas favorables propiedades farmacológicas. Además, la inhibición de la actividad cinasa en células normales puede a veces ser tolerada, presentando una ventana terapéutica a la muerte selectiva de células tumorales (Zhang et al., 2009).

El análisis del quinoma en células T tumorales Jurkat nos ha aportado gran información acerca de las posibles dianas enzimáticas a través de las cuales nuestros compuestos están induciendo apoptosis en células tumorales Jurkat y K562. Tras analizar un panel de 96 quinasas que incluían enzimas implicadas en las principales rutas de proliferación y muerte celular, como por ejemplo, ERK/MAPK, JNK, p38/MAPK y mTOR, descubrimos de forma sorprendente que los compuestos 5e, 5i, 6a y 6d estaban inhibiendo la actividad enzimática en un 50% de una única enzima, la proteína asociada a muerte DAPK-1.
La proteína DAPK-1 es una serina/treonina cinasa regulada por Ca2+/CaM involucrada en múltiples vías de señalización celular relacionadas con supervivencia, apoptosis y autofagia (Lin et al., 2009). Se ha descrito como un regulador positivo en la muerte celular mediada por el IFNγ y ahora se está estudiando como un importante gen pro-apoptótico y un potencial gen supresor de tumores, sujeto a la pérdida o inactivación en distintos tipos de cánceres (Bialik and Kimchi, 2004).

Nuestros resultados muestran que los compuestos inducen una importante muerte celular por apoptosis en células T tumorales Jurkat y los ensayos in vitro de actividad enzimática han demostrado que este efecto es debido a la inhibición selectiva de la actividad catalítica de la enzima DAPK-1. Estos datos pueden resultar contradictorios dado que estamos inhibiendo la actividad catalítica de una enzima inductora de muerte, pero aunque desconocemos el sitio de unión de los compuestos, cabe esperar que se unan al sitio de reconocimiento del ATP o a otra zona cercana del dominio catalítico, como previamente ha sido descrito para los derivados de purinas (Liu and Gray, 2006).

La proteína DAPK-1 presenta varios niveles de regulación de su actividad. El primero implica al dominio autorregulador de unión a Ca2+/CaM, que se mantiene unido al dominio catalítico bloqueando el acceso de sustratos exógenos e inhibiendo así la actividad de DAPK1 (Cohen et al., 1997). El segundo nivel de regulación está mediado por el mecanismo de autofosforilación de la serina 308, situada dentro de este dominio autorregulador Ca2+/CaM, como un mecanismo que inhibe la actividad catalítica (Shohat et al., 2002). La forma fosforilada de DAPK1 va a constituir la forma inactiva y tras la eliminación del grupo fosfato va a debilitarse el bloqueo ejercido entre ambos dominios y a liberar parcialmente la autoinhibición, permitiendo las interacciones entre el segmento regulador de CaM, la hendidura catalítica y el sitio de unión al ATP. Así, tras el estímulo apropiado, la defosforilación de la serina libera la proteína del mecanismo de autoinhibición y permite su función pro-apoptótica (Bialik and Kimchi, 2006; Shohat et al., 2001).

El estado de fosforilación/defosforilación de la proteína DAPK1 va a ser el primer indicio de activación de la misma y dado que nuestros resultados muestran una clara inhibición de la proteína fosforilada, podríamos postular que los compuestos van a inhibir la actividad catalítica de la enzima DAPK1, como demuestran los análisis in vitro, lo que disminuiría el mecanismo autoinhibitorio de fosforilación de la serina 308, permitiendo la liberación del dominio catalítico por parte del dominio regulador de Ca2+/CaM, elevando finalmente la
cantidad de proteína defosforilada y por tanto activa, llevando en última instancia al incremento de la actividad pro-apoptótica de la proteína DAPK1 observado tras el tratamiento con nuestros compuestos.

Respecto a la leve disminución observada también en la cantidad de proteína DAPK1 total tras el tratamiento con los compuestos 6a y 6d, podría ser explicada por el hecho de que la proteína presenta un gran número de mecanismos reguladores a nivel post-tradicional que van a gobernar tanto su actividad como su estabilidad y que incluyen no sólo los eventos de autofosforilación o fosforilación por otras cinasas, sino procesos de ubiquitinización y degradación por proteasas (Bialik and Kimchi, 2014). Es el caso, por ejemplo, de la proteína Hsp90, una proteína chaperona que se une al dominio cinasa junto con la proteína CHIP, facilitando la maduración, estabilidad y actividad de DAPK1 e impidiendo la degradación de la proteína defosforilada por parte del proteasoma, lo que hace que la proteína exhiba una vida media bastante larga (Citri et al., 2006). Dado que nuestros compuestos podrían estar actuando a través de la inhibición específica del dominio cinasa, puede ser posible que estén impidiendo la unión específica de Hsp90 u otras proteínas similares con dicho dominio, favoreciendo una rápida degradación de la proteína defosforilada, que sabemos que está aumentada tras el tratamiento con nuestros compuestos, traduciéndose en la disminución observada de la proteína DAPK1 total. Hemos realizado estudios preliminares con inhibidores específicos de proteasas e inhibidores del proteasoma para confirmar esta teoría, pero aún no hemos obtenido resultados concluyentes.

Además, no debemos olvidar que algunas funciones de la proteína DAPK1 ocurren de manera independiente de su actividad catalítica. Por ejemplo, el dominio de muerte, situado en el extremo c-terminal, va a ser capaz de mediar la interacción con otras proteínas pro-apoptóticas como son Fas, el receptor de TNF, TRADD y FADD, todas ellas implicadas en la ruta extrínseca de la apoptosis. Este dominio también va a albergar el sitio de unión de otros sustratos, como por ejemplo la proteína ERK (Chen et al., 2005), que fosforilará a DAPK1 en su serina 735, incrementando su actividad catalítica. Por tanto, la inducción de apoptosis ejercida por nuestros compuestos tras inhibir parcialmente la actividad catalítica de la enzima podría ser debida en parte a la actuación de otras proteínas colaboradoras con DAPK1, lo cual deberemos estudiar con más detenimiento puesto que, por ejemplo, la actividad catalítica de ERK no se va a ver afectada tras el tratamiento con nuestros compuestos, según reveló el ensayo de actividad enzimática in vitro.
Un dato importante obtenido en este estudio es el que muestra la proteína implicada en la ruta de activación de Ras-MAPK-ERK, la cinasa S6 ribosomal o RSK, una proteína efectora de ERK que fosforila a DAPK1 en su serina 289, inhibiendo su actividad catalítica. Esta acción no se relaciona con el aumento de apoptosis tras el tratamiento con nuestros compuestos, pero dado que la actividad enzimática de RSK se ve aumentada casi un 50% sobre su actividad normal tras el tratamiento, debemos estudiar más a fondo la posible relación con la actividad pro-apoptótica de DAPK1. Estudios recientes han mostrado que tanto DAPK1 como RSK fosforilan a la proteína ribosomal S6, clave en la traducción proteica, pero de forma inhibitoria o activadora respectivamente. Por tanto, será interesante estudiar la relación existente entre ambas y si la modulación de la síntesis proteica afecta al proceso de apoptosis observado (Anjum et al., 2005) (Lin et al., 2010).

Del mismo modo, el ensayo de actividad enzimática in vitro mostró una actividad elevada de la proteína Glicógeno sintasa cinasa 3 o GSK3, superior al 50% de su actividad máxima. GSK3 es una serina/treonina cinasa identificada como una enzima capaz de fosforilar a la enzima glicógeno sintasa e inhibir la síntesis de glicógeno (Embi et al., 1980). Además, fosforila cerca de 50 sustratos más y modula el proceso de apoptosis, existiendo evidencias de su acción pro-apoptótica a través de la activación de la vía intrínseca, mediante la fosforilación y activación de la proteína pro-apoptótica Bax y la fosforilación y degradación de la proteína anti-apoptótica MCL-1 (Beurel and Jope, 2006). Por tanto, la actividad incrementada de la proteína GSK3 podría estar actuando de forma sinérgica con la acción pro-apoptótica de DAPK1 tras el tratamiento con nuestros compuestos, aunque ésta es una teoría que necesitará ser confirmada mediante el estudio de la actividad de la GSK-3 o de sus proteínas efectoras.

El activo proceso de la muerte celular es fundamental para el desarrollo normal y el mantenimiento de la homeostasis de los organismos multicelulares. Varias líneas de evidencia indican que la supresión de la muerte celular es uno de los pasos críticos en el proceso de tumorogénesis (revisado por Kissil et al., 1997). Uno de los cambios más importantes que ha sufrido el estudio de la proteína DAPK1 ha sido averiguar no sólo su función pro-apoptótica, sino que es un potente gen supresor sujeto a la pérdida o inactivación en cáncer. Las últimas investigaciones tanto en líneas celulares como en modelos de ratón han establecido que la DAPK1 funciona como un supresor tumoral al menos en dos fases diferentes del proceso de tumorogénesis. La primera, denominada punto de control durante la fase temprana de la
transformación celular, y la segunda, que ocurre al final del desarrollo del cáncer, durante la metástasis.

Los estudios realizados con fibroblastos embrionarios de ratón (MEFs) mostraron que DAPK-1 era necesaria para una respuesta apoptótica completa frente a la transformación oncogénica, pues MEFs deficientes en DAPK-1 presentaron una actividad disminuida del gen p53 y consecuentemente un reducido nivel de apoptosis, lo que sugiere que DAPK1 sirve como un mecanismo de seguridad frente a las fases tempranas del desarrollo tumoral (Raveh et al., 2001). Además, se examinó la metástasis vía inyección intravenosa de células de carcinoma que expresaban DAPK-1 en ratones singénicos, comprobando que se restauraba la expresión de la proteína a niveles fisiológicos y suprimiendo la fase de metástasis en estos ratones. La expresión del transgen de DAPK1 resensibilizó a las células tumorales a los estímulos apoptóticos. Además, es probable que las funciones relacionadas con el citosqueleto, como la adhesión y la contractibilidad celular, puedan influir en varias fases de la metástasis, por lo que la pérdida de expresión de proteína puede proporcionar un avance durante la progresión tumoral (Bialik and Kimchi, 2004).

Consistente con la evidencia experimental de la función de supresor tumoral de DAPK1, muchas células de tumores humanos, incluyendo líneas derivadas de tumores y biopsias mostraron una pérdida de expresión de DAPK. Estas líneas incluían células derivadas de leucemias T y B, colon, nasofaríngeo, útero, ovario, pulmón, mama y colorrectal (Kissil et al., 1997). Este evento está estrechamente relacionado con la expresión aberrante de patrones de metilación del ADN como mecanismo responsable del silenciamiento del gen de DAPK1, pues el promotor presenta un alto índice de islas CpG susceptibles de metilación (Katzenellenbogen et al., 1999). De hecho, la correlación existente entre la metilación de DAPK1 y los datos clínicos de los pacientes ha revelado que las células cancerígenas con el promotor DAPK1 metilado pueden ser menos sensibles a la quimioterapia y a la radioterapia, debido a que el mecanismo principal de actuación es la inducción de apoptosis. También se ha asociado con una prognosis baja en cáncer de pulmón, reducida supervivencia y recurrencia en cáncer de mama, mayor progresión linfóide y en general una agresividad superior en la mayoría de los cánceres (Benderska and Schneider-Stock, 2014).

El hecho de que el proceso de metilación de la proteína DAPK1 esté íntimamente relacionado con un mejor o peor pronóstico de la enfermedad y de que numerosos estudios han revelado que el tratamiento con inhibidores de la metilación, como la 5-azacitidina o el
decitabine, restauran casi totalmente la expresión de la proteína (Kissil et al., 1997; Raval et al., 2007), nos llevó a explorar la posibilidad de diseñar una terapia combinada que incluyera inhibidores de la metilación y nuestros compuestos inductores de muerte en líneas caren tes de expresión de la proteína. Por ello, utilizamos la línea tumoral B Raji, pues previamente se había descrito una ausencia total de expresión de RNAm y de proteína como consecuencia de un porcentaje de metilación de su promotor superior al 86% (Kissil et al., 1997), que fue confirmado por análisis de la expresión de RNA mensajero. Tras el tratamiento con 5-azacitidina y los compuestos 5i, 5e 6a y 6d hemos sido capaces de inducir de forma transitoria y proporcional a la dosis de compuesto utilizada, la muerte por apoptosis con nuestros en células tumorales Raji.

Este resultado no sólo confirma la especificidad de nuestros fármacos frente a la inhibición de la actividad enzimática de la proteína DAPK1, incapaces de inducir apoptosis en las células Raji con el promotor metilado, sino que abre una puerta a futuras terapias combinadas dirigidas a aquellos tumores en los que la metilación del ADN ha eliminado la expresión completa de la proteína DAPK1.

Por tanto, nuestros compuestos serían los primeros inhibidores selectivos de la actividad enzimática de la proteína inductora de muerte DAPK1, lo que representa un avance sustancial para abordar en el futuro no sólo nuevas estrategias de terapia antitumoral, sino el estudio de la propia proteína y de todos los procesos en los que participa, que pueden ayudar a comprender mejor el complejo proceso tumoral.

Además de su claro y destacado papel en apoptosis, recientes avances han establecido un importante papel de la proteína DAPK1 en un diverso rango de vías de transducción de señales como factores de crecimiento y autofagia, involucrada en la degradación de las organelas y proteínas, muy relacionada últimamente con escenarios clínicos como enfermedades infecciosas, cáncer, enfermedades neurodegenerativas y autoinmunidad. DAPK1 integra señales procedentes de vías apoptóticas y autofágicas, aunque su papel aún no está claro. Los mecanismos a través de los cuales DAPK1 promueve el proceso de autofagia parecen implicar a la proteína beclina-1, principal molécula autofágica descubierta en humanos, como diana de DAPK1 (Zalckvar et al., 2009). Además, DAPK1 va a fosforilar directamente a la proteína cinasa D1 o PKD1, enzima implicada en procesos de proliferación, motilidad y muerte celular programada o necroptosis (Eisenberg-Lerner and Kimchi, 2007).
Así, los biólogos del cáncer han intentado conectar apoptosis, autofagia y necrosis en un modelo de interacción capaz de explicar el proceso del cáncer y su tratamiento. Recientes estudios han demostrado que la mejor forma de utilizar los procesos de muerte como terapias potenciales puede recaer en el descubrimiento de agentes útiles capaces de actuar de forma fisiológica sobre las dianas clave en las rutas que conectan el complejo proceso de muerte celular programada así como sus componentes proteicos de forma individual, para lo cual la identificación de nuevas dianas y drogas específicas frente a ellas se convierten en una herramienta fundamental (Ouyang et al., 2012).

Dado que la proteína DAPK1 está implicada directamente en los procesos de apoptosis, autofagia y necrosis (Nikoletopoulo et al., 2013), y que podría ser clave en los mecanismos que integran todas estas rutas, podríamos enfocar las futuras investigaciones a la utilización de nuestros inhibidores de la actividad catalítica de la proteína inductora de muerte DAPK1, no sólo como una prometedora droga antitumoral, sino como una herramienta útil para el estudio y entendimiento de las rutas de muerte celulares implicadas en el cáncer y otros desórdenes.
VI. CONCLUSIONS
1. The poly-substituted purine-derived compounds 5e, 5i, 6a and 6d strongly inhibit the proliferation of tumor cells belonging to the hematopoietic lineage (B and T lymphocytes, monocytes and erythroblasts) in a dose-dependent manner. In addition, the compound 6d effectively inhibits the growth of cell lines derived from melanoma, breast and cervical tumors.

2. The compounds 5e, 5i, 6a and 6d inhibit the growth of Jurkat and K562 tumor cells by triggering cell death by a caspase-dependent apoptotic mechanism. The compound-mediated induction of apoptosis is significantly blocked by the overexpression of the anti-apoptotic proteins Bcl-2 and Bcl-x. The compound 6d, however, partially overcomes this negative modulation.

3. Compounds 5e, 5i, 6a and 6d are selective inhibitors of the Death-Associated Protein Kinase-1 (DAPK1).

4. Compound 5e, 5i, 6a and especially 6d, are potent inducers of apoptosis through inhibition of DAPK-1 enzymatic activity by causing dephosphorylation of the regulatory residue Ser308, which keeps DAPK-1 into a conformational active state that is able to induce apoptosis of tumor cells.

5. A combination therapy of compounds 5e, 5i, 6a or 6d together with the demethylating agent 5-azacytidine induces transient and dose-dependent apoptosis in Raji B cells, which are otherwise resistant to the compound monotherapy.
VII. BIBLIOGRAFÍA

