REACTION ZONES DEVELOPED BETWEEN CORUNDUM METAPELITE AND MARBLE, ALBORÁN SEA BASEMENT, WESTERN MEDITERRANEAN: ORIGIN AND PHASE RELATIONS

VICENTE LÓPEZ SÁNCHEZ-VIZCAÍNO
Departamento de Geología, Universidad de Jaén, Escuela Universitaria Politécnica de Linares, C/ Alfonso X el Sabio 28, E-23700 Linares, Spain

JUAN IGNACIO SOTO
Instituto Andaluz de Ciencias de la Tierra & Departamento de Geodinámica, C.S.I.C. – Universidad de Granada, Facultad de Ciencias, Campus Fuentenueva s/n, E-18071 Granada, Spain

ABSTRACT

Several reaction-zones occur in the contact between impure calcite marble and corundum-bearing high-grade metapelite in the basement, Alborán Sea (site 976, ODP Leg 161, western Mediterranean). From the metapelite (corundum + biotite + anorthite + K-feldspar ± garnet ± sillimanite) to the marble (calcite + anorthite + biotite + amphibole + clinopyroxene), the sequence of mineral assemblages in these reaction zones is: corundum + hercynite + biotite + anorthite + K-feldspar (Zone I), hercynite + biotite + anorthite + K-feldspar (Zone II), biotite + garnet (Grs15–30) + anorthite (Zone III), amphibole + biotite + garnet (Grs25–33) + anorthite + K-feldspar (Zone IV), anorthite + clinopyroxene (Zone V), and clinopyroxene + garnet (Grs49–65) + anorthite (Zone VI). These reaction zones are interpreted as having developed by diffusion metasomatism of Al_2O_3, CaO, and SiO_2 between the marble and metapelite at 705 < T < 730°C and 4.3 < P < 5.1 kbar. Corundum grew by a muscovite-breakdown reaction in the absence of quartz, at T > 650°C and P < 5 kbar. Phase-relation analysis with chemical potential projections ($\mu_{Al_2O_3} - \mu_{SiO_2} - \mu_{CaO}$) is consistent with the observed sequence of reaction zones, the mineral assemblages, and the observed variation in the chemical composition of garnet, hercynite, and biotite among the different zones. The behavior of the three diffusing components is characterized by a slight mean variation in μ_{SiO_2} and a strong variation in $\mu_{Al_2O_3}$ and μ_{CaO} between the metapelite and the calcite marble. In spite of this, strong gradients in chemical potential are deduced for SiO_2 and Al_2O_3 through Zone III. In our opinion, this zone was formed under non-ideal conditions of diffusion owing to the heterogeneous character of the protolith, derived partly from a corundum metapelite and partly from a quartz-bearing metapelite.

Keywords: reaction zones, corundum, phase relations, diffusion, high-grade metamorphism, crustal extension, Alborán Sea, western Mediterranean.

Sommaire

Plusieurs zones de réaction caractérisent le contact entre un marbre impur à calcite et une métapélite à corindon dans le socle de la mer Alborán (site de forage 976, campagne de forage ODP 161, mer Méditerranée occidentale). A partir de la métapélite (corindon + biotite + anorthite + feldspat potassique ± grenat ± sillimanite), voici la séquence d’assemblages de minéraux dans ces zones de réaction: corindon + hercynite + biotite + anorthite + feldspat potassique (Zone I), hercynite + biotite + anorthite + feldspat potassique (Zone II), biotite + garnet (Grs15–30) + anorthite (Zone III), amphibole + biotite + garnet (Grs25–33) + anorthite + feldspat potassique (Zone IV), anorthite + clinopyroxène (Zone V), et clinopyroxène + garnet (Grs49–65) + anorthite (Zone VI). Ces zones de réaction résulteraient d’une métasomatose par diffusion de Al_2O_3, CaO, et SiO_2 entre le marbre et la métapélite à 705 °C < T < 730°C et 4.3 < P < 5.1 kbar. Le corindon serait le produit de la déstabilisation du corindon en l’absence du quartz à T > 650°C, P < 5 kbar. Les relations de phases, analysées par projections de potentiels chimiques ($\mu_{Al_2O_3} - \mu_{SiO_2} - \mu_{CaO}$), concordent avec la séquence observée de zones de réaction, les assemblages de minéraux, et la variation observée en composition chimique du grenat, de l’hercynite et de la biotite parmi les zones. Le comportement des trois composants mobiles indique une légère variation en μ_{SiO_2}, en moyenne, et une forte variation en $\mu_{Al_2O_3}$ et μ_{CaO} entre la métapélite et le marbre à calcite. En revanche, il y aurait eu des gradients plus marqués en...
potentiel chimique de SiO₂ et Al₂O₃ à travers la Zone III. A notre avis, cette zone s’est formée sous conditions non-idiées de diffusion à cause de l’hétérogénéité du protolithe, dérivé aux dépens d’une métapélite à corindon et d’une métapélite quartzifiè re.

Mots-clés: zones de réaction, corindon, relations de phases, diffusion, degré de métamorphisme élevé, extension de la croûte, mer Alborán, Méditerranée occidentale.

INTRODUCTION

Diffusion in response to chemical potential gradients has proven to be an efficient process that explains the formation of reaction zones between adjacent rock types (e.g., Korzhinskii 1970, Brady 1977, Joesten 1977). Models applied to such reaction zones usually assume that ideal conditions take place during the diffusional process. Diffusing components are assumed to be in equilibrium at each point across the reaction band (Thompson 1959). This assumption allows one to simplify the problem and to predict the observed sequence of reaction bands due to continuous monotonic gradients in the chemical potential of the diffusing components (Brady 1977). Such monotonic gradients are, at least in part, the result of the application of these simple models to assemblages in which most minerals are considered to be pure phases with a fixed composition. Diffusion behavior is here complicated by several variables that alter the predicted ideal model. Such features include also irregular, inhomogeneous, additional or absent zones, textures indicative of incomplete reaction, and modal gradients (Dunkley et al. 1999).

In this paper, we describe zones of metasomatic reaction developed between a corundum-bearing (Al-saturated) metapelite and an impure calcite marble from the Alborán Sea basement, Western Mediterranean (drilled at site 976 of the Ocean Drilling Program, Leg 161). The observed sequence of mineral assemblages can be interpreted in both reaction zones in terms of combined diffusion of CaO, Al₂O₃, and SiO₂ across the reaction band. After determining the P–T conditions of formation of these reaction zones, 725°C and 5 kbar, we have developed a thermodynamic model for their origin based on the variations in the chemical potential of CaO (μ_CaO), Al₂O₃ (μ_Al₂O₃), and SiO₂ (μ_SiO₂). With the calculated projection of the phase diagram, we were able to model the observed sequence of mineral assemblages, together with the variation in the chemical composition of some minerals with a predictably complicated behavior (e.g., garnet and biotite).

GEOLOGICAL SETTING

The Alborán Sea, in the Western Mediterranean, is an extensional basin of Tertiary age partly surrounded by an arcuate mountain chain comprising the Betic and Rif belts in southern Spain and Morocco, respectively. The Alborán Sea formed during the Miocene on the extended and thinned remains of the Internal Zones of these chains (e.g., Comas et al. 1992). The metamorphic basement of the Alborán Sea basin was drilled by ODP, Leg 161 at site 976 (Shipboard Scientific Party 1996) (Fig. 1a), and consists of high-grade quartz – biotite – sillimanite – plagioclase schist with porphyroblasts of garnet and andalusite, and centimeter- to meter-thick intercalations of calcite marble (Fig. 1b). The high-grade schist also contains millimetric to centimetric interlayers of corundum-bearing rocks lacking quartz and staurolite (where the composition is Al-rich), staurolite-bearing schist (where the composition is Fe-rich), and “fibrolite” and biotite-rich schist without plagioclase (Soto & Platt 1999).

At Hole 976B (Fig. 1b), this sequence overlies banded pelitic gneiss with K-feldspar, cordierite, and andalusite, with abundant migmatitic textures involving veins and foliation-parallel segregations of felsic material. Both the schist and gneiss are cut by peraluminous, leucogranitic dikes.

The schists and the gneisses show distinctive differences in their tectonometamorphic evolution (Soto & Platt 1999). The high-grade schist experienced rapid decompression accompanied by heating (from ~500°C at 10.5 kbar to 650–700°C at 3–4 kbar), followed by cooling through 500–600°C at 2 kbar or less. In the gneiss, partial melting occurred during a decompression P–T path at 700–750°C from at least 6 to 3 kbar. Crystallization of anatectic melts took place during a subsequent isobaric cooling path (P < 3 kbar) down to T ~600°C (Soto et al. 1999). In both rock types, widespread disequilibrium and overstepping of metamorphic reactions are common features, suggesting rapid exhumation and cooling (average rate of cooling estimated to be 126°C per million years; Platt et al. 1998). This P–T evolution is consistent with metamorphism in a late orogenic extensional basin, and suggests the complete removal of the lithospheric mantle beneath the extending region during the Neogene (Soto & Platt 1999, Platt et al. 1998).

ANALYTICAL METHODS

Mineral analysis was performed with a CAMEBAX SX–50 microprobe at the University of Granada. An acceleration voltage of 15 kV, a beam current of 20 nA, and a beam diameter of 8 μm were used. Standards were simple synthetic oxides (Al₂O₃, Fe₂O₃, Cr₂O₃, MnTiO₃, MgO), natural silicates (albite, orthoclase, and wollas-

085 40#1-fév-02-2328-06 86 3/28/02, 16:21
REACTION ZONES BETWEEN CORUNDUM METAPELITE AND MARBLE, ALBORÁN SEA

Data were reduced using the PAP procedure from Pouchou & Pichoir (1985). Representative compositions, mineral formulae and end-member proportions are shown in Table 1.

Major-element determinations in whole rocks were established by X-ray fluorescence (Philips 1404) after fusion with lithium tetraborate. Precision was typically better than \(\pm 1.5\% \) for a concentration of 10 wt.\%.

Selected results of XRF analyses of several rock types involved in the reaction zones are shown in Table 2.

DESCRIPTION OF THE REACTION ZONES

Calc-silicate assemblages appear as green reaction zones, usually only up to a few centimeters thick, along the contact between calcite marbles and metapelites. Most commonly, they consist of prismatic or rounded porphyroblasts of clinopyroxene oriented parallel to the contact between the two rocks. In addition, the reaction zones may contain transposed fragments of pelites, and in many cases define isoclinal folds formed during a second event of deformation, D\(_2\) (Shipboard Scientific Party 1996).

The most complete sequence of mineral zones is observed, nevertheless, at the contact between corundum-bearing metapelites and calcite marbles. In this position, reaction zones occur as narrow bands up to 15 mm wide (Figs. 2a, 3). Six reaction zones with different assemblages can be distinguished according to significant textural and mineral changes, i.e., the appearance or disappearance of one or more phases. The boundaries between the zones are usually sharp.

The quartz-bearing metapelites interlayered with the corundum-bearing metapelites are also modified where they occur close to the reaction zones with the marble, giving rise to an individual zone (Zone III; see below). This commonly takes place near the hinge of isoclinal D\(_2\) folds (Fig. 2a).
Corundum-bearing metapelite

This rock consists of corundum + biotite + plagioclase + K-feldspar + ilmenite ± garnet ± sillimanite ± andalusite, together with retrograde muscovite and margarite. Corundum appears as isolated small rounded grains in a biotite-rich matrix or as larger skeletal poikiloblasts (up to 25 μm). The main foliation (S₂) is defined by biotite, plagioclase, and scarce ilmenite (Figs. 2b, 3). Garnet occurs as large porphyroblasts usually with inclusion trails of ilmenite and graphite de-
REACTION ZONES BETWEEN CORUNDUM METAPELITE AND MARBLE, ALBORÁN SEA

and generally they even completely disappear (Fig. 3a). This can be interpreted as a metasomatism-induced feature of the rock.

Zone I

This zone is defined by the appearance of hercynite coexisting with corundum, and the absence of sillimanite, andalusite, and garnet. It is commonly observed at the core of D² isoclinal folds (Fig. 2a). In this zone, the hercynite grains increase in size away from the boundary with the corundum-bearing metapelite, concomitantly with a decrease in the modal abundance of corundum (Fig. 3b). The other minerals present in this zone are plagioclase + biotite + K-feldspar + ilmenite + margarite. Hercynite (Hc95–94, <0.6 wt% ZnO) is found as dark green skeletal porphyroblasts of variable size (up to 25 μm) with a preferred orientation parallel to S₂, or as smaller grains dispersed in the matrix with biotite and plagioclase (An₉₈₋₉₂) porphyroblasts. Skeletal porphyroblasts of hercynite are invariably intergrown with biotite, plagioclase, and abundant blades of ilmenite, and commonly together with aggregates of corundum (Fig. 3b).

Zone II

This zone is defined by the disappearance of corundum and the progressive decrease in modal abundance and size of the hercynite grains (Hc₉₃₋₉₁) toward the boundary with Zone III (Fig. 3b). The composition of biotite varies from the corundum-bearing metapelite to Zones I and II, and it is clearly determined by the composition of the associated minerals (Fig. 5). For
example, biotite in contact with corundum (metapelite and Zone I) is richer in VIAl and Ti, whereas biotite in contact with hercynite and ilmenite (Zone II) has higher X_{Mg} values. Biotite in all the zones corresponds, nevertheless, to annite (i.e., $X_{Mg} < 0.5$ and VIAl < 0.5; Rieder et al. 1998). Margarite (Mrg 82–61) occurs as very thin (<10 μm) radial, low-birefringence aggregates of secondary origin surrounding both corundum and hercynite in Zones I and II and in the metapelite.

Zone III

Zone III contains biotite + garnet + plagioclase + K-feldspar. This zone grades away from the reaction band to the common quartz-bearing metapelite interlayered with the corundum-bearing assemblages. Biotite and hypidiomorphic to xenomorphic porphyroblasts of garnet (up to 30 μm across) define the main foliation (S_2) in Zone III. The biotite in this zone is richer in Mg and poorer in Al (Fig. 5) than biotite in Zones I and II, whereas its Ti content is similar. The garnet is crowded with inclusions of biotite and plagioclase parallel and

![Fig. 3. Textural variations from the corundum-bearing metapelite to calcite marble. Bold dashed line indicates the location of the reaction-zone boundaries. Note that the complete thickness of the reaction zones I, II, V, and VI is not shown and that the sketch (c) has a slightly smaller scale. Sketch drawn after photomicrographs (sample 976B–76R–1, piece 9a, 75–79 cm).](image-url)
REACTION ZONES BETWEEN CORUNDUM METAPELITE AND MARBLE, ALBORÁN SEA

Continuous with the external foliation (Fig. 2c), and is in some cases altered to chlorite. Garnet is essentially an almandine – grossular solid solution with low contents of pyrope (<10%) and spessartine (Fig. 4). The garnet shows a fairly constant composition and flat patterns of zoning. Plagioclase appears as small rounded grains in the matrix, and it is almost pure anorthite (An 95–97).

Zone IV

Zone IV consists of amphibole + biotite + garnet + plagioclase + K-feldspar. This zone is defined by the appearance of tabular aggregates of green-brown amphibole coexisting with biotite, plagioclase, and large porphyroblasts of garnet near the contact with Zone III (Fig. 3c). Toward the central part of the zone, biotite tends to disappear, and garnet occurs as aggregates of small rounded grains in contact with amphibole and plagioclase (Fig. 2c). Amphibole has not been reported previously in metapelites from the Alborán Basement (Soto et al. 1999), and its appearance here is attributed to the interaction between the marble and the metapelite. The amphibole is a ferrohornblende (Leake et al. 1997) and can basically be defined as a solid solution between tremolite (X_T in the range 0.12–0.4), pargasite (X_{Pg} in the range 0.38–0.58), and tschermakite (X_{Ts} in the range 0.16–0.36), with $0.31 < X_{Mg} < 0.37$ and a significant K-for-Na substitution in A site (X_K in the range 0.45–0.57).

The composition of biotite is very similar to that from Zone III, except for a slightly higher X_{Mg} value (Fig. 5). Small rounded grains of garnet are richer in grossular (Grs 25–33) and poorer in almandine (Alm 54–59) and pyrope (Prp 5–6) than those forming large porphyroblasts (Fig. 4). The plagioclase is An 96–99.

Zone V

This zone has a sharp contact with Zone IV (Figs. 2d, 3c) and is formed by a granoblastic aggregate of plagioclase, clinopyroxene, titanite, and scarce pyrite. Plagioclase (An_{99}) and clinopyroxene (Hd_{17}) have a very homogeneous composition.

Zone VI

Zone VI contains clinopyroxene + garnet + plagioclase + calcite + titanite + pyrite. This zone is discontinuous along the length of the reaction band; where it is absent, the contact between Zone V and the marble is sharp and defined by the appearance of larger porphyro-
blasts of clinopyroxene (Fig. 3d). Zone VI consists of an intergrowth of xenomorphic grains of clinopyroxene and garnet, occasionally together with large crystals of subidiomorphic titanite and xenomorphic pyrite. The garnet is partially retrograded to plagioclase, calcite, and quartz, and clinopyroxene, to actinolitic amphibole. The garnet in Zone VI has higher grossular (Grs 49–65) and andradite (Adr 3–9) contents and much lower almandine (Alm 23–34) and pyrope (Prp 0.6–2) values than garnet in other zones (Fig. 4). The clinopyroxene varies widely in its X_{Mg} ratio (Hd 44–67), whereas plagioclase is again very close to the anorthite end-member (An 94–99).

Marble

The marble is an impure calcite marble with small dispersed grains of clinopyroxene, amphibole, biotite, and plagioclase. The amphibole is a ferroan pargasite (Leake et al. 1997) with X_{Prg} in the range 0.88–0.90, X_{Ts} in the range 0.1–0.2, X_{Mg} in the range 0.29–0.31 and X_{K} in the range 0.88–0.93. Biotite is compositionally very similar to those from Zones III and IV (Fig. 5). Clinopyroxene and plagioclase have homogeneous compositions near H$_{30}$ and An$_{99}$, respectively.

Alteration has partially affected Zones V and VI and the marble (Fig. 2a); a yellow to brownish aggregate of submicroscopic sheet silicates developed at the expense of clinopyroxene, partially transformed to actinolitic amphibole, together with andradite-rich garnet, titanite, large grains of anorthite-rich plagioclase, and calcite.

P–T Conditions During the Formations of the Reaction Zones

Mass-transfer processes producing metamorphic reaction-zones are more easily modeled assuming constant P and T conditions (Thompson 1975, Brady 1977, Kerrick 1977, Glassley 1983, van Marecke de Lummen & Verkaeren 1986, Joesten 1991). We have first estimated the P–T conditions for the mineral assemblage occurring in the contact between the corundum metapelite and Zone I. We assume, following Thompson (1959), that local equilibrium exists in the contact between two consecutive zones, characterized by a small number of phases and a high thermodynamic variance. This assumption allows one firstly to overcome the problem of the high thermodynamic variance of the assemblages of each single zone for purposes of making thermobarometric estimations, and, secondly, to elucidate the origin of corundum and hercynite in these rocks.

The existence of local equilibrium in the contact between the corundum metapelite and Zone I is in agreement with the reaction stoichiometries calculated by analysis of phase relations between the mineral assemblages of the two zones. Calculations were made using the program C-space of Torres Roldán et al. (2000), based on the algebraic technique of singular-value decomposition of Fisher (1989, 1993). Using the real chemical compositions of minerals from both zones, we obtained the following reaction:

$$76.62 \text{Bt} + 28160.07 \text{Crn} + 79.30 \text{Pl} + 66.98 \text{Ilm}$$

$$(\text{Crn metapelite}) = 54.25 \text{Bt} + 28195.36 \text{Crn} + 12.50 \text{Hc} + 77.37 \text{Pl} + 1.0 \text{K}_2\text{O} \ (\text{Zone I}),$$

which shows that the mineral assemblage found in Zone I can be derived directly from that of the corundum metapelite with a minor addition of K$_2$O.

Hence, we have calculated a P–T projection for the mineral assemblage of the corundum-bearing metapelite and Zone I, consisting of biotite + plagioclase + K-feldspar + corundum + hercynite ± garnet ± sillimanite in the system SiO$_2$–Al$_2$O$_3$–CaO–K$_2$O–FeO–MgO–H$_2$O (Fig. 6). The Na$_2$O component was not considered, as it is only present in minor amounts in plagioclase. The calculations were made using the Vertex program of

![Figure 5](image_url)

The following minerals were considered pure phases in the calculations: Al-silicates, anorthite, corundum, K-feldspar, and muscovite. Ideal solid-solution models have been used for biotite (phlogopite, annite, eastonite, and siderophyllite end-members) and hercynite (hercynite and spinel end-members), whereas for garnet we used the ternary solid-solution model of Berman.
The estimation of equilibrium conditions for the assemblages studied is made by comparing the predicted and the observed compositions for the minerals of interest (Connolly et al. 1994) (Table 3). Four univariant reactions result for the system considered (Fig. 6), and define an invariant point at 715 °C and 4.9 kbar. These univariant reactions (labeled using the phase-absent notation of Zen 1966) are: [Bt, Grt, Hc, An, Als]:

\[Ms + Grt + Bt = An + Kfs + Hc + Als, \]

one of several possible hycnite-producing reactions that consumes muscovite, all of which run subparallel to reaction (1); reaction [Ms]:

\[Grt + Bt + Crn = Kfs + An + Hc + Als, \]

which consumes garnet toward lower-pressure conditions (P < 5–5.5 kbar), and finally, at temperatures below the corundum-forming reaction (1), there is another hycnite-forming reaction, [Kfs]:

\[Bt + Grt + Crn = Ms + An + Hc + Als, \]

producing corundum at the expense of muscovite; reaction [Crt]:

\[Ms + Grt + Bt = An + Kfs + Hc + Als, \]

which consumes garnet toward lower-pressure conditions (P < 5 to 3.5 kbar).

This topology could be affected by the occurrence of a certain amount of CO₂ in the fluid phase during metamorphism, as suggested by the proximity of the marble to the metapelite. Nevertheless, for the calculated composition of the fluid phase in the marble [0.11 < X(CO₂) < 0.16: López Sánchez-Vizcaíno & Soto 1999], reaction (1) is displaced to lower temperatures by about 10 °C only (Fig. 6). As a result, we can henceforth use pure H₂O as a valid approximation to the fluid composition as far as the CO₂ content is concerned.

The appearance of corundum in coexistence with K-feldspar in the metapelites from the basement on the Alborán Sea has been associated by Soto & Platt (1999) with the breakdown reaction of muscovite in quartz-absent rocks, by means of the univariant reaction (1). This proposal is confirmed by the absence of primary muscovite in all corundum-bearing metapelites. Thus, reaction (1) represents the lower-temperature limit of the corundum-bearing assemblages (Fig. 6). Furthermore, as we have not observed corundum associated with muscovite, reaction (4) did not take place in these rocks and, consequently, conditions of the hycnite stability were limited by reactions (2) and (3). Accordingly, the observed assemblage of corundum + hycnite + biotite + anorthite is stable at temperatures above reaction (1) and at pressures below reaction (3) (i.e., T > 650°C and P < 5.5 kbar), as demonstrated by the topology of the reactions described above (Fig. 6).

These P–T conditions are consistent with the metamorphic peak described in other high-grade metapelites from the Alborán Sea basement by Soto & Platt (1999). These authors reconstructed a decompression P–T path that crossed the muscovite-out reaction (1) at temperatures below the invariant point depicted in Figure 6. As a consequence, and using these data; reaction (2) would produce the growth of hycnite + Al-silicate and the consumption of garnet. The lack of garnet in the metapelite toward Zone I is in accordance with this
proposition. Nonetheless, the absence of Al-silicate in the proximity of the reaction zones, together with the inverse relationships between the modal abundance of hercynite and corundum in Zone I, cannot easily be explained by the reaction history deduced from the univariant reactions. The former problem can be resolved, at least in part, by considering the relations in the divariant field [Grt, Ms] enclosed by the univariant reactions [Bt, Grt, Hc, An, Als] (1) and [Ms] (3). Within this field, the high-variance reactions [Grt, Ms]:

\[
\text{Bt + Crn + Als = Bt + Kfs + Hc}
\]

and [Grt, Ms, Als]:

\[
\text{Bt + Crn = Bt + Kfs + Hc},
\]

determine the consumption of Al-silicate and corundum, and the formation of hercynite and K-feldspar, with increasing temperature.

These reactions can more properly be interpreted as isopleths showing the change of the chemical composition of biotite and hercynite. Figure 6 shows how in the P–T stability field of hercynite with a composition similar to that observed in the rocks (spl 5 – spl 7), the coexistence of biotite and hercynite. Figure 6 shows how in the isopleths showing the change of the chemical composition of biotite and hercynite, and of the reaction zones (biotite, corundum, hercynite, anorthite, etc), the narrow shaded field shown in Figure 6 (P ≈ 4.3–5.1 kbar, T ≈ 705–730°C). These were most probably the metamorphic conditions prevailing during the formation of the reaction zones, as is also demonstrated by the good correspondence between the observed and the predicted compositions of the minerals (Table 3).

In spite of this interpretation, the topology depicted in Figure 6 is insufficient to explain the lack of garnet and sillimanite in the corundum metapelite close to and in the reaction zones. As both minerals appear to be in textural equilibrium with corundum away from the reaction zones, the variation of other thermodynamic properties of the system must be invoked. The calculation of chemical potential projections at constant P and T could largely resolve these apparent inconsistencies, as we will discuss below.

Development of the Reaction Zones

Origin of the Al-rich protoliths

Although the association of rock types and the metamorphic characteristics of the basement sampled at Site 976 resemble those within parts of the Alpujárride Complex of the adjacent Betic Cordillera, corundum-bearing metapelites like those studied here have not yet been described in the onshore Alpujárride rocks (cf. Westerhof 1975, Torres-Roldán 1979). Considering the petrological history of the basement in the Alborán Sea, the Al-enrichment in these metapelites could be driven by partial melting (see Osanai et al. 1998, and references therein). According to the P–T evolution proposed by Soto & Platt (1999), partial melting occurred under low-P conditions owing to the breakdown of muscovite, and would have produced the loss of SiO2 and the Al2O3 enrichment enhancing the former chemical gradient between the metapelite and the marble. The extent of melting is difficult to evaluate, but textural and mineralogical observations made by these authors suggest that this process was incipient in the high-grade schist rocks. Therefore, it is also possible that the observed Al-enrichment in some domains of the high-grade schist occurred only adjacent to layers originally poor in quartz.

Evidence for diffusion

The reaction zones described developed along the boundary between two contrasting rock-types, corundum-bearing metapelite and marble, and are interpreted as having been formed by diffusion-induced metasomatism during metamorphism. Several observations support this interpretation: 1) the symmetrical distribution of calc-silicate bands on both sides of the metapelite intercalations in the marble (López Sánchez-Vizcaíno & Soto 1999), and 2) the small scale of all observed reaction-zones (<3 mm in width). From these two observations, we can infer the existence of steep gradients in chemical potential between the reacting rocks. For these conditions, diffusion is a rapid process of transport (Bucher 1998), since the rate of diffusion is proportional to the chemical potential gradient and inversely proportional to the distance of transport (Bucher 1998, eq. 10). 3) The chemical variation of several minerals (garnet, biotite, hercynite; Figs. 5, 6) is continuous across the reaction bands (Korzhinskii 1970, Hofmann 1972). 4) The bulk and mineralogical compositions of the reaction zones are intermediate with respect to the bulk compositions of the reacting rocks (Dunkley et al. 1999), as revealed in an ACF projection (Fig. 7, Table 2).

Chemical potential analysis of reaction zones

Chemical potential projections of phase diagrams have frequently been used to study infiltration or diffusion zones with a simple mineralogy and chemical composition. Consequently, they are an important tool for the study of mass-transfer processes in geological environments (see, e.g., Korzhinskii 1959, 1965, Burt 1974, Brady 1977). In this paper, we calculate such projections at constant P–T conditions, corresponding to the
diffusion-induced processes of mass transfer involved in the origin of the reaction zones.

Although many reaction zones between metapelites and calcite marbles have been essentially explained by the diffusion of CaO (e.g., Thompson 1975, Glassley 1983), the occurrence of corundum in the metapelites and of distinct silicate minerals in all reaction zones in our suite suggests that diffusion of Al$_2$O$_3$ and SiO$_2$ could also have a significant influence in the formation of the reaction zones. Other likely diffusing components, as for example FeO and MgO, have not been incorporated in the model since they would have had a minor influence on the formation of the reaction zones, as is deduced from the ACF diagram (Fig. 7). Therefore, we analyzed the formation of the reaction zones by means of the variations in the chemical potentials of CaO, Al$_2$O$_3$ and SiO$_2$ in the phase diagram projections $\mu_{\text{CaO}} - \mu_{\text{SiO}_2}$ and $\mu_{\text{CaO}} - \mu_{\text{Al}_{2}\text{O}_3}$ (Figs. 8a, b). The $\mu_{\text{Al}_{2}\text{O}_3} - \mu_{\text{SiO}_2}$ projection was also calculated, but it does not give important additional information.

In accordance with the inferred field of stability for the corundum-bearing assemblage in the model P–T diagram (Fig. 6), the P–T conditions chosen for the calculations are 725°C and 5 kbar. Phase relations have been calculated for the chemical system FeO – MgO – SiO$_2$ – Al$_2$O$_3$ – CaO – Na$_2$O – K$_2$O – H$_2$O using all of the minerals observed in the reaction zones. Phase relations including calcite, and consequently CO$_2$, have been calculated independently, although the results are shown superposed onto the other diagrams (Fig. 8). The calculations have been made with Vertex (Connolly 1990) using the same solid-solution models and database as referred to previously. Ideal solid-solution models for amphibole (tremolite, actinolite, tschermakite, ferrotschermakite, pargasite, ferropargasite) and clinopyroxene (diopside–hedenbergite) also have been included.

The results obtained are summarized in Figure 8 and in Table 3, where a comparison is made between the calculated and the observed compositions of minerals.
In both the $\mu_{\text{CaO}} - \mu_{\text{Al}_{2}\text{O}_{3}}$ and $\mu_{\text{CaO}} - \mu_{\text{SiO}_{2}}$ projections, the general pattern is depicted for the different fields of stability according to the reaction zones observed from the corundum-bearing metapelite to the calcite marble. In the $\mu_{\text{CaO}} - \mu_{\text{Al}_{2}\text{O}_{3}}$ projection, the stability of corundum has been calculated at $\mu_{\text{Al}_{2}\text{O}_{3}} \approx -0.1656 \times 10^7$ J for the above-mentioned P–T conditions (725°C and 5 kbar). Similarly, the stability of quartz has been calculated at the above-mentioned P–T conditions (725 ± 5 kbar). The diagrams owing to its very high variance.

To overcome the problem of the high variance of the mineral assemblages in several reaction-zones, we have applied, where necessary, the principle of local equilibrium to the contact between two consecutive reaction-zones (Thompson 1959). We calculated the stability conditions for the combination of both mineral assemblages. Note that the stability conditions of the corundum-bearing metapelite could not be shown in these diagrams owing to its very high variance.

In Figure 8a, the stability conditions of Zone I plot over the Crn line (equivalent to the Crn = An reaction in Fig. 8b) in a region where corundum coexists with hercynite and biotite of the observed chemical composition (Table 3). The two diagrams also show that, at the P–T conditions estimated in Figure 6, the $\mu_{\text{CaO}} - \mu_{\text{Al}_{2}\text{O}_{3}}$ stability conditions of Zone I are incompatible with the occurrence of siliimanite and garnet. Besides, it is also apparent that the disappearance of corundum from Zone I toward Zone II, difficult to explain owing to P–T variations (see above), was also a diffusion-driven process induced by gradients in chemical potential. Zone II is stable in the field defined by several divariant reactions involving anorthite, biotite and hercynite. Such reactions fit the observed enrichment in Mg of hercynite and in Mg and Tschermak substitution (eastonite component) of biotite toward Zone III, in which garnet appears. These mineralogical and compositional changes take place throughout an increase of $\mu_{\text{CaO}} \approx 0.15 \times 10^6$ J, a decrease of $\mu_{\text{Al}_{2}\text{O}_{3}} \approx 9 \times 10^5$ J and nearly constant $\mu_{\text{SiO}_{2}}$.

Owing to the heterogeneous distribution of minerals (garnet, biotite and amphibole) in Zone IV, calculations were made using the observed compositions of coexisting garnet, biotite, and amphibole (field IV in Fig. 8), as well as the assemblage in the contact between zones IV and V, namely: amphibole, biotite, clinopyroxene, and anorthite. There is, in general, a good correlation between the observed and the calculated compositions for the various minerals (Table 3), but only the tschermakite content of amphibole differs substantially from the observed values. However the described mineralogical changes between zones III and V occurred with slightly decreasing values of $\mu_{\text{CaO}} (= -0.740 \times 10^6$ J on average), through a decrease of $\mu_{\text{Al}_{2}\text{O}_{3}} \approx 9 \times 10^5$ J and in increase of $\mu_{\text{SiO}_{2}} \approx 5 \times 10^5$ J.

Finally, the stability field of the low-variance assemblage found in the contact between Zone VI and the marble has been calculated in separate diagrams. The calculation was made with the previously described solid-solutions, together with a pargasitic amphibole composition (ideal solid-solution between pargasite and ferropargasite) and a fluid phase with a composition ranging between pure H₂O and CO₂. The calculated phase-relationships, superposed on Figure 8, demonstrate that the observed assemblage was only stable at CO₂-poor fluid compositions [X(CO₂) < 0.15]. This inference agrees with previous calculations of the fluid composition in the marbles (López Sánchez-Vizcaíno & Soto 1999) and validates the assumption of a pure H₂O fluid in all of the calculations made. The transition from the fields IV–V to VI–M took place through a significant increase in $\mu_{\text{CaO}} \approx 1 \times 10^5$ J, a decrease in $\mu_{\text{SiO}_{2}} \approx 4 \times 10^3$ J and almost constant $\mu_{\text{Al}_{2}\text{O}_{3}}$.

In summary, the deduced fields of stability of the different assemblages in terms of chemical potentials depict a possible general path of change in $\mu_{\text{CaO}}, \mu_{\text{Al}_{2}\text{O}_{3}}$, and $\mu_{\text{SiO}_{2}}$. This path is in agreement with the expected variation from an Al-saturated metapelite to a calcite marble; nonetheless, it is far from the continuous monotropic gradients in the chemical potential of the diffusing components considered in the ideal models dealing with the study of these processes (Brady 1977). In fact, three distinctive segments with very different slopes can be distinguished in the diagrams (Figs. 8a, b). The main inflexion along the path corresponds to the transition from zone III to zone IV. This inflexion probably reflects the heterogeneous nature of the protolith in these zones, which may derive partly from a corundum metapelite and partly from a quartz-bearing metapelite (Fig. 2a).

DISCUSSION OF THE MODEL

There is general agreement that the continuous change in the chemical composition of the minerals is one of the outstanding features of diffusion zones (Korzhinskii 1970, Brady 1977), but in most cases, chemical potential diagrams are constructed considering that the minerals involved are pure substances (Brady 1977). This approach impedes, inevitably, the calculation of continuous reactions and may lead to uncertainties in the results obtained. The model developed here, however, explains satisfactorily the sequence of mineral assemblages observed as well as the change in the chemical composition of most of the minerals (garnet, biotite, clinopyroxene and spinel).

In spite of this, the proposed model also displays several limitations. For example, it is impossible to explain some features, namely, the irregular distribution of zones I, II, and III, the variable thickness of some bands (see Fig. 3), and the variation in the modal abundance of some minerals within certain zones, such as, for example, corundum in zone I, hercynite in zone II, and biotite and amphibole in zone IV. All these features point to the formation of these reaction zones under non-ideal conditions. Variable rates of reaction and cation
exchange between coexisting minerals could exert some influence (Dunkley et al. 1999). According to Brady (1977), it is also very possible that the components diffusing in the reaction zones (CaO, Al₂O₃, and SiO₂) could have different velocities of diffusion and density in the intergranular region. In that case, diffusion of one component would produce gradients in the chemical potential of the other components, and the sequence of reaction zones inferred in the chemical potential diagram will not be a straight line (Brady 1977).

Although this situation probably occurred in our case, it is evident that the main complications in the calculated path of chemical potentials unavoidably result from the heterogeneous character of some of the
REACTION ZONES BETWEEN CORUNDUM METAPELITE AND MARBLE, ALBORÁN SEA

This would explain the observed sharp increase in the chemical potential of silica and the sharp decrease in that of alumina at the front between zone II (derived from a corundum-bearing pelite) and zone III (partly derived from a quartz-bearing pelite).

In conclusion, these reaction zones seem to result from the existence of important chemical gradients in the Alborán Sea basement, probably enhanced by incongruent melting accompanying muscovite dehydration. The P–T conditions deduced for the development of the reaction zones (4.3 < P < 5.1 kbar, 705 < T < 730°C) are consistent with the metamorphic evolution of the Alborán Sea basement, characterized by a peak temperature achieved at low-P conditions (Soto & Platt 1999).

ACKNOWLEDGEMENTS

Project MAR98–0981–CICYT together with Grupo de Investigación 4019 (Junta de Andalucía) provided the financial support for this work. Project BTE2000–1489 and Grupo RNM–0145 are acknowledged as well. We thank M.F. Taner, an anonymous reviewer, and R.F. Martin for their constructive criticism and suggestions, and J.A.D. Connolly for his critical reading of a previous version of the manuscript. We also thank Chris Laurin for her corrections of the English version of the manuscript.

REFERENCES

Received August 8, 2001, revised manuscript accepted November 22, 2001.