Continuity of Operators Intertwining with Convolution Operators

C. Aparicio and A. R. Villena

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada,
18071 Granada, Spain
E-mail: camilo@ugr.es, avillena@ugr.es

Communicated by D. Sarason

Received October 18, 2001; accepted January 30, 2002

Let G be a locally compact abelian group, let μ be a bounded complex-valued Borel measure on G, and let T_μ be the corresponding convolution operator on $L^1(G)$. Let X be a Banach space and let S be a continuous linear operator on X. Then we show that every linear operator $F: X \to L^1(G)$ such that $FS = T_\mu F$ is continuous if and only if the pair (S, T_μ) has no critical eigenvalue.

Key Words: automatic continuity; intertwining operators; multipliers.

1. INTRODUCTION

Johnson asked in [5, Note 8(iii)] whether every linear operator $\Phi: L^1(\mathbb{R}) \to L^1(\mathbb{R})$ with the property that $\Phi(\mu*f) = \mu*\Phi(f)$ for each $f \in L^1(\mathbb{R})$ is automatically continuous in the case when μ is a fixed bounded complex-valued Borel measure on \mathbb{R} whose Fourier–Stieltjes transform is not constant on any open interval. This question may also be found in [2, Unsolved problem 13.5, p. 408]. The same problem has been very recently suggested again by Laursen and Neumann [6]. In fact, these authors asked [6, Open problem 6.3.3, p. 639] the following generalization of Johnson’s question. Suppose that μ and ν are bounded complex-valued Borel measures on a locally compact abelian group G such that the corresponding pair (T_ν, T_μ) of convolution operators on $L^1(G)$ has no critical eigenvalue. Is every linear operator $\Phi: L^1(G) \to L^1(G)$ for which $T_\nu \Phi = \Phi T_\mu$ automatically continuous?

The aim of this paper is to prove the affirmative solution of this problem.

1Supported by D.G.I.C.Y.T. Grant PB98-1358.
2. OPERATORS INTERTWINING WITH CONVOLUTION OPERATORS

Throughout this section, G stands for a locally compact abelian group, \hat{G} denotes its dual group, and \hat{f} and $\hat{\mu}$ denote the Fourier transforms of f and μ for all $f \in L^1(G)$ and $\mu \in M(G)$, respectively.

Let X and Y be Banach spaces and let S and T be continuous linear operators on X and Y, respectively. A standard requirement in order to obtain a discontinuous linear operator $F : X \to Y$ intertwining with S and T is the existence of a critical eigenvalue of the pair (S, T). We recall that a complex number λ is said to be a critical eigenvalue of (S, T) if λ is an eigenvalue of T and $(\lambda I_X - S)(X)$ is of infinite codimension in X. It is important to note here that if (S, T) has a critical eigenvalue, then there exists a discontinuous linear operator $\Phi : X \to Y$ such that $\Phi S = T \Phi$ (see [7, Lemma 3.2]).

A key notion to study the continuity of a linear map Φ from a Banach space X into a Banach space Y is that of the separating space $\mathcal{E}(\Phi)$ of Φ which is defined as follows:

$$\mathcal{E}(\Phi) = \{ y \in Y : \text{there exists } (x_n) \to 0 \text{ in } X \text{ with } (\Phi(x_n)) \to y \}.$$

The separating space measures the closability of Φ and the closed graph theorem shows that Φ is continuous if and only if $\mathcal{E}(\Phi) = \{0\}$. For a thorough discussion of the separating space we refer the reader to [7].

Theorem 2.1. Let G be a locally compact abelian group, let μ be a bounded complex-valued Borel measure on G, and let T_μ be the corresponding convolution operator $f \mapsto \mu * f$ on $L^1(G)$. Let X be a Banach space and let S be a continuous linear operator on X. Suppose that the pair (S, T_μ) has no critical eigenvalue. Then every linear operator $\Phi : X \to L^1(G)$ such that $\Phi S = T_\mu \Phi$ is continuous.

Proof. To obtain a contradiction, suppose that Φ is discontinuous and therefore that $\mathcal{E}(\Phi) \neq \{0\}$.

We first prove that the set

$$\{ \hat{\mu}(\gamma) : \gamma \in \hat{G} \text{ and } \hat{f}(\gamma) \neq 0, \text{for some } f \in \mathcal{E}(\Phi) \}$$

is finite. Conversely, suppose that it is infinite. Let (γ_n) be a sequence in \hat{G} such that $\hat{\mu}(\gamma_m) \neq \hat{\mu}(\gamma_n)$ for $n \neq m$ and such that for every $n \in \mathbb{N}$ there exists $f_n \in \mathcal{E}(\Phi)$ such that $\hat{f}_n(\gamma_n) \neq 0$. To shorten notation, we write $\lambda_n = \hat{\mu}(\gamma_n)$ for each $n \in \mathbb{N}$. Let us denote by I_X and I_G the identity operators on X and $L^1(G)$, respectively. Since $(\lambda_n I_G - T_\mu) \Phi = \Phi(\lambda_n I_X - S)$ for each $n \in \mathbb{N}$, the
From Lemma 3.3 we now deduce that

\[(\lambda_1 I_G - T_\mu) \cdots (\lambda_n I_G - T_\mu)(\Xi(\Phi)) = (\lambda_1 I_G - T_\mu) \cdots (\lambda_n I_G - T_\mu)(\Xi(\Phi)).\]

We now observe that the Fourier transform of every function of the latter set vanishes at \(\gamma_{n+1}\). Indeed, we have

\[
[(\lambda_1 I_G - T_\mu) \cdots (\lambda_n I_G - T_\mu)(f)](\gamma_{n+1}) = (\hat{\lambda}_1 - \hat{\mu}(\gamma_{n+1})) \cdots (\hat{\lambda}_n - \hat{\mu}(\gamma_{n+1})) \hat{f}(\gamma_{n+1}) = 0
\]

for each \(f \in L^1(G)\) and finally the continuity of the Fourier transform at \(\gamma_{n+1}\) gives the desired conclusion. Consequently, the Fourier transform of every function of the set \((\lambda_1 I_G - T_\mu) \cdots (\lambda_n I_G - T_\mu)(\Xi(\Phi))\) vanishes at \(\gamma_{n+1}\). We thus get

\[
(\hat{\lambda}_1 - \hat{\mu}(\gamma_{n+1})) \cdots (\hat{\lambda}_n - \hat{\mu}(\gamma_{n+1})) \hat{f}(\gamma_{n+1}) = 0
\]

for each \(f \in \Xi(\Phi)\). Hence \((\hat{\lambda}_1 - \hat{\mu}(\gamma_{n+1})) \cdots (\hat{\lambda}_n - \hat{\mu}(\gamma_{n+1})) \hat{f}(\gamma_{n+1}) = 0\). Since \((\hat{\lambda}_1 - \hat{\mu}(\gamma_{n+1})) \cdots (\hat{\lambda}_n - \hat{\mu}(\gamma_{n+1})) \neq 0\), it follows that \(\hat{f}(\gamma_{n+1}) = 0\), which contradicts the choice of \(f_{n+1}\).

Consequently, there exists \(\alpha_1, \ldots, \alpha_N \in \mathbb{C}\) such that

\[
\{\hat{\mu}(\gamma) : \gamma \in \hat{G} \text{ and } \hat{f}(\gamma) \neq 0, \text{ for some } f \in \Xi(\Phi)\} = \{\alpha_1, \ldots, \alpha_N\}.
\]

This clearly implies

\[
(\alpha_1 I_G - T_\mu) \cdots (\alpha_N I_G - T_\mu)(\Xi(\Phi)) = \{0\}.
\]

By removing some of the scalars from the set \(\{\alpha_1, \ldots, \alpha_N\}\), if necessary, we may assume that \(\alpha_1, \ldots, \alpha_N\) are eigenvalues of \(T_\mu\). On the other hand, since \((S, T_\mu)\) has no critical eigenvalue, it may be concluded that \(\alpha_i I_X - S\) has finite-codimensional range for each \(i = 1, \ldots, N\).

We now write \(M = (\alpha_1 I_X - S) \cdots (\alpha_N I_X - S)(X)\). From what has previously been proved, it follows that the codimension of \(M\) in \(X\) is finite. From [7, Lemma 3.3] we now deduce that \(M\) is closed in \(X\). We shall denote by \(R\) the continuous linear map from \(X\) onto \(M\) given by

\[
R(x) = (\alpha_1 I_X - S) \cdots (\alpha_N I_X - S)(x) \text{ for each } x \in X
\]

and we shall denote by \(\Psi\) the restriction of \(\Phi\) to \(M\). Since \(\Psi R = (\alpha_1 I_G - T_\mu) \cdots (\alpha_N I_G - T_\mu)\Phi\) and \(\alpha_1 I_G - T_\mu) \cdots (\alpha_N I_G - T_\mu)(\Xi(\Phi)) = \{0\}\), Sinclair [7, Lemma 1.3(i)] shows that \(\Psi R\) is continuous.

Our next goal is to show that \(\Psi\) is continuous. Let \((y_n)\) be a sequence in \(M\) with \(\lim y_n = 0\). By the open mapping theorem, \(R\) is open, and so there exists a sequence \((x_n)\) in \(X\) such that \(\lim x_n = 0\) and \(R(x_n) = y_n\) for each \(n \in \mathbb{N}\).
Since ΨR is continuous, we have $\lim \Psi(y_n) = \lim \Psi R(x_n) = 0$. Thus Ψ is continuous.

We are now in a position to prove that Φ is continuous. This just follows from the continuity of Φ on M and the finite-codimensionality of M. This contradicts our assumption on Φ.

Remark 2.1. It should be noted that any convolution operator T_μ on $L^1(G)$ is a $L^1(G)$-multiplier operator. A careful analysis of the preceding proof shows that Theorem 2.1 holds true if we replace $L^1(G)$ by a linear subspace Y of $M(G)$ which is endowed with a Banach space topology that makes Fourier transform on Y continuous and if we replace T_μ by any Y-multiplier operator on Y, i.e. a linear operator $T : Y \to Y$ with the property that there exists a function a_T on \hat{G} such that $\hat{Tf}(\gamma) = a_T(\gamma) \hat{f}(\gamma)$ for all $f \in Y$ and $\gamma \in \hat{G}$.

Taking into account that the eigenvalues of the convolution operator T_μ are just the complex numbers λ such that μ equals λ on some open subset of \hat{G}, Theorem 2.1 immediately gives the following.

Corollary 2.1. Let G be a locally compact abelian group, let μ be a bounded complex-valued Borel measure on G, and let T_μ be the corresponding convolution operator $f \mapsto \mu * f$ on $L^1(G)$. Let X be a Banach space and let S be a continuous linear operator on X. Suppose that μ is not constant on any open subset of \hat{G}. Then every linear operator $\Phi : X \to L^1(G)$ such that $\Phi S = T_\mu \Phi$ is continuous.

It is worth pointing out that the preceding results are closely related to the problem of characterizing the topologies on function algebras and function spaces that make a fixed operator continuous [3,4,8,9,10]. The following result illustrates this fact.

Corollary 2.2. Let G be a locally compact abelian group, let μ be a bounded complex-valued Borel measure on G, and let T_μ be the corresponding convolution operator $f \mapsto \mu * f$ on $L^1(G)$. Then the following assertions are equivalent.

i. Every complete norm $|\cdot|$ on $L^1(G)$ with the property that the convolution operator T_μ from $(L^1(G),|\cdot|)$ into itself is continuous is automatically equivalent to $||\cdot||_1$.

ii. The codimension of $\{\lambda f - \mu * f : f \in L^1(G)\}$ in $L^1(G)$ is finite whenever $\lambda \in \mathbb{C}$ is such that μ equals λ on some open subset of G.

Proof. We first suppose that the second assertion holds. If $|\cdot|$ is any complete norm on $L^1(G)$ that makes T_μ continuous, then we apply
Theorem 2.1 with $X = (L^1(G), | \cdot |)$, $S = T_\mu$, and being Φ the identity operator from $(L^1(G), | \cdot |)$ onto $(L^1(G), \| \cdot \|_1)$. We thus obtain that Φ is continuous and the open mapping theorem now shows that Φ is a homeomorphism and therefore that $| \cdot |$ is equivalent to $\| \cdot \|_1$.

We now assume that the second assertion fails to be true. Then the codimension of $M = \{ \lambda f - \mu \ast f : f \in L^1(G) \}$ in $L^1(G)$ is infinite for some eigenvalue λ of T_μ, which implies that there exists a discontinuous linear functional ϕ on $L^1(G)$ such that $\phi(M) = \{0\}$. Thus $\phi(\mu \ast f) = \lambda \phi(f)$ for each $f \in L^1(G)$. Let $u \in L^1(G) \setminus \{0\}$ such that $\mu \ast u = \lambda u$. Since the map $f \mapsto 2f - \phi(f)u$ is a linear bijection from $L^1(G)$ onto itself, it follows that $| f | = \| 2f - \phi(f)u \|_1$ is a complete norm on $L^1(G)$ that is not equivalent to $\| \cdot \|_1$. On the other hand, for every $f \in L^1(G)$ we have

$$| \mu \ast f | = \| 2\mu \ast f - \phi(\mu \ast f)u \|_1 = \| 2\mu \ast f - \lambda \phi(f)u \|_1 = \| \mu \ast (2f - \phi(f)u) \|_1 \leq \| T_\mu \| \| 2f - \phi(f)u \|_1 = \| T_\mu \| \| f \|, $$

where $\| T_\mu \|$ stands for the operator norm of $T_\mu : (L^1(G), \| \cdot \|_1) \to (L^1(G), \| \cdot \|_1)$. This shows that $| \cdot |$ makes T_μ continuous and therefore that the first assertion fails to be true. □

3. OPERATORS INTERTWINING WITH MULTIPLIERS

In this section we show that $L^1(G)$ may be replaced by an arbitrary Banach space Y and that the convolution operator T_μ on $L^1(G)$ may be replaced by any multiplier on Y.

In the sequel, for any Banach space X, X^* stands for the dual space of X and \mathcal{E}_{X^*} for the set of extreme points of the closed unit ball of X^*. A continuous linear operator T on a Banach space X is said to be a multiplier if there exists a function a_T on \mathcal{E}_{X^*} such that $f(T(x)) = a_T(f)x$ for all $x \in X$ and $f \in \mathcal{E}_{X^*}$. We note that a_T is uniquely determined and we call it the multiplier function of T. For a deep discussion of multipliers on Banach spaces we refer the reader to [1].

Theorem 3.1. Let X and Y be Banach spaces and let S and T be continuous linear operators on X and Y, respectively. Suppose that T is a multiplier and that the pair (S, T) has no critical eigenvalue. Then every linear operator $\Phi : X \to Y$ such that $\Phi S = T\Phi$ is continuous.

Proof. The set

$$\{ a_T(f) : f \in \mathcal{E}_{Y^*} \text{ and } f(y) \neq 0, \text{ for some } y \in \mathcal{E}(\Phi) \}$$
can be checked to be finite by the same method as in the proof of Theorem 2.1 with the Fourier transform at a character g replaced by the action of a functional $f \in \mathcal{E}_Y$. This gives $a_1, \ldots, a_N \in \mathbb{C}$ such that
\[
 f((a_1 I_Y - T) \cdots (a_N I_Y - T)y) = 0
\]
for all $f \in \mathcal{E}_Y$ and $y \in \mathfrak{Z}(\Phi)$, where I_Y stands for the identity operator on Y. Thus $(a_1 I_Y - T) \cdots (a_N I_Y - T)(\mathfrak{Z}(\Phi)) = \{0\}$. The rest of the proof runs just as in the proof of Theorem 2.1.

Analysis similar to that in the preceding section leads to the following results.

Corollary 3.1. Let X and Y be Banach spaces and let S and T be continuous linear operators on X and Y, respectively. Suppose that T is a multiplier and that its multiplier function α_T is not constant on any open subset of \mathcal{E}_Y. Then every linear operator $\Phi : X \to Y$ such that $\Phi S = T \Phi$ is continuous.

Corollary 3.2. Let $(X, \| \cdot \|)$ be a Banach space and let T be a multiplier on X. Then the following assertions are equivalent.

i. Every complete norm $\| \cdot \|$ on X with the property that the operator T from $(X, \| \cdot \|)$ into itself is continuous is automatically equivalent to $\| \cdot \|$.

ii. The codimension of $\{ \lambda x - T(x) : x \in X \}$ in X is finite whenever λ is an eigenvalue of T.

Remark 3.1. It is known that for any locally compact Hausdorff space Ω and for any $a \in C_0(\Omega)$ the multiplication operator $x \mapsto ax$ on $C_0(\Omega)$ is a multiplier. Thus the preceding result can be thought of as an approach in Banach space context of the results in [3, 4, 8, 9, 10].

REFERENCES

