Multiple Bonding in Four-Coordinated Titanium(IV) Compounds

J. A. Dobado and José Molina Molina*
Grupo de Modelización y Diseño Molecular, Instituto de Biotecnología, Campus Fuentenueva, Universidad de Granada, 18071 Granada, Spain

Rolf Ugglä and Markku R. Sundberg*
Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland

Received January 5, 2000

Theoretical description (MP2/6-311G* and B3LYP/6-311G*) is presented for hypervalent titanium alkoxide model compounds showing linear \angleTi–O–C angles. This feature is explained by the existence of a polarized triple Ti–O bond. In contrast, a series of 18 electron germanium derivatives displaying bent \angleGe–O–C angles contain polarized single Ge–O bonds. The nature of the Ti–O and Ge–O bonds is established by means of natural bond order, atoms-in-molecules theory, and electron localization function analyses.

Introduction

Although Hückel's description1 of a triple bond as consisting of a single σ and two π bonds is still favored, particularly in organic chemistry, it has been challenged since the beginning. The Pauling–Slater concept2 of bent bonds was originally intended to describe double bonds in ethylene, but later Pauling3 extended the idea to triple bonds.

Although the Hückel concept has traditionally had a hegemony especially in organic chemistry,5,6 the rivaling model of Pauling and Slater has found some use in describing terminal P–O bonding (sometimes called banana or Ω bonding). However, our recent results show clearly that this concept is not adequate to describe the phosphoryl bond.7

Computational methods have been used to make the distinction between the two models. Although it was claimed that the traditional Hückel description would be favored over the bent-bond model, some recent quantum chemical calculations strongly support the idea of bent bonds.8,9

The traditional description of a multiple bond between a metal and a ligand atom relies on the Hückel concept. These bonds have mostly been found in higher oxidation states of metals, with electron counts of d^0, d^1, and d^2. Low numbers of the d electrons are needed to provide empty d orbitals for bonding with filled p orbitals of the ligand atoms. Another possibility for the formation of a metal–ligand multiple bond is the donation of metal d electrons to empty ligand atom p orbitals, as was found for a series of ternary and quaternary metal nitrides.10

In their recent study, using natural bond order (NBO) methods to analyze Mo–P and W–P triple bonds in phosphido complexes, Wagener and Frenking11 demonstrated that the s and p components are not very polarized to either the metal or the phosphorus end.

Application of the atoms-in-molecules (AIM) theory$^{12–14}$ has attracted great attention regarding the bonding nature, including the description of possible hypervalent compounds$^{15–17}$ and transition metal complexes.$^{18–22}$ In this context, Frenking et al.23,24 revised the concept of the chemical bond to a transition metal by theoretical methods. Multiple bonding to transition metals has recently generated noticeable interest and discussion, including Ga and Al multiple bonding.$^{25–27}$ In addition, very

* Corresponding authors. E-mail addresses: jmolina@ugr.es (for J.M.M.); sundberg@cc.helsinki.fi (for M.R.S.).

(3) Slater, J. C. Phys. Rev. 1931, 37, 481.
(14) See: www.chemistry.mcmaster.ca/faculty/bader/aim.
converged. The computed B3LYP/6-311G* and MP2(full)/6-311G* geometries for the Ti(IV) compounds are given in Table 1.

Results and Discussion

Geometrical Aspects

Quantum chemical calculations yielded linear C_3v geometries for the titanium compounds (1–4) and bent C_2v geometries for the germanium (5–8) compounds (Figure 1). The geometrical data are summarized in Table 1. For compounds 2–4, the eclipsed conformations represent true energy minima and the staggered ones correspond to rotational

6-311G* densities as input, as described in the AIM theory. The electron localization function (ELF) analysis and the calculation of the electronic densities over the basins were made with the TopMod series of programs. The NLMOs were analyzed using the NBO program within the Gaussian 98 package.

Methods

All calculations were carried out using the Gaussian 98 package of programs. All geometries were fully optimized, and all stationary points on the hypersurface were characterized by harmonic frequency analysis. The B3LYP/6-311G* and MP2(full)/6-311G* theoretical levels were used to study all of the compounds (1–8). AIM analyses were performed by the AIMPAC series of programs using the B3LYP/6-311G* densities as input, as described in the AIM theory.

Reference

Four-Coordinated Titanium(IV) Compounds

Table 2. NBO Analysis of the Titanium (1–4) and Germanium (5–8) Compounds at the B3LYP/6-311G* Theoretical Level

<table>
<thead>
<tr>
<th>compd</th>
<th>bond</th>
<th>X–O</th>
<th>%X* (%s,%p,%d)</th>
<th>%O(%s,%p)</th>
<th>compd</th>
<th>bond</th>
<th>X–O</th>
<th>%X* (%s,%p,%d)</th>
<th>%O(%s,%p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. H₅TiOCH₃</td>
<td>Ti–O(σ)</td>
<td>12(0.21,0.79)</td>
<td>138(51.49)</td>
<td></td>
<td>5. H₅GeOCH₃</td>
<td>Ge–O(σ)</td>
<td>19(0.23,77)</td>
<td>19(25.75)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>9(0.00,100)</td>
<td>19(1.00)</td>
<td></td>
<td></td>
<td>C–O(σ)</td>
<td>33(24.76)</td>
<td>67(30.70)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>9(0.00,100)</td>
<td>19(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C–O(π)</td>
<td>31(2.27,0.9)</td>
<td>69(49.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. F₅TiOCH₃</td>
<td>Ti–O(σ)</td>
<td>12(0.29,0.71)</td>
<td>138(50.50)</td>
<td></td>
<td>6. H₅GeOCH₃</td>
<td>Ge–O(σ)</td>
<td>18(0.29,71)</td>
<td>82(19.81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>10(0.00,100)</td>
<td>90(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>10(0.00,100)</td>
<td>90(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C–O(π)</td>
<td>31(2.27,0.9)</td>
<td>69(49.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cl₅TiOCH₃</td>
<td>Ti–O(σ)</td>
<td>14(2.37,0.77)</td>
<td>86(51.49)</td>
<td></td>
<td>7. Cl₅GeOCH₃</td>
<td>Ge–O(σ)</td>
<td>19(0.29,71)</td>
<td>81(23.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>12(0.00,100)</td>
<td>88(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>12(0.00,100)</td>
<td>88(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C–O(π)</td>
<td>31(2.27,0.9)</td>
<td>70(49.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Br₅TiOCH₃</td>
<td>Ti–O(σ)</td>
<td>14(2.27,0.78)</td>
<td>86(51.49)</td>
<td></td>
<td>8. Br₅GeOCH₃</td>
<td>Ge–O(σ)</td>
<td>19(0.29,71)</td>
<td>81(23.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>12(0.00,100)</td>
<td>88(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti–O(π)</td>
<td>12(0.00,100)</td>
<td>88(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C–O(π)</td>
<td>30(2.27,0.8)</td>
<td>70(49.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*X = C, Ti. b X = C, Ge.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Charge Densities, ρ(r), Laplacians of the Charge Densities, ∇²ρ(r), and Local Energy Densities, Eₐ(r), for the BCPs of the Titanium (1–4) and Germanium (5–8) Compounds at the B3LYP/6-311G* Theoretical Level

<table>
<thead>
<tr>
<th>compd</th>
<th>bond</th>
<th>ρ(r) e/au³</th>
<th>∇²ρ(r) e/au⁵</th>
<th>[ρ] / [ρ]</th>
<th>Eₐ(r) hartree/au³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ti–O</td>
<td>1.067</td>
<td>0.885</td>
<td>0.192</td>
<td>-0.063</td>
<td></td>
</tr>
<tr>
<td>2. Ti–O</td>
<td>1.060</td>
<td>0.849</td>
<td>0.188</td>
<td>-0.058</td>
<td></td>
</tr>
<tr>
<td>3. Ti–O</td>
<td>1.072</td>
<td>0.890</td>
<td>0.195</td>
<td>-0.069</td>
<td></td>
</tr>
<tr>
<td>4. Ti–O</td>
<td>0.238</td>
<td>0.157</td>
<td>0.630</td>
<td>-0.311</td>
<td></td>
</tr>
<tr>
<td>Ti–Br</td>
<td>0.084</td>
<td>0.135</td>
<td>0.296</td>
<td>-0.027</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The titanium (1–4) and germanium (5–8) compounds.

The effect on the C–O bond is small and is in the opposite direction. The Ti–O bond lengths when highly electronegative substituents are attached to Ti with a d⁰ electronic configuration. Compound 2 has the shortest C–O bond. The germanium compounds (5–8) exhibit Ge–O–C angles of about 120°. The Ge–O bond length is close to the length of the average Ge–O single bond, and the influence of substituents is opposite to that in the titanium compounds. The Ge–O bond length decreases as the electronegativities of the substituents increase, giving lengths in the order 5 < 8 < 7 < 6 (see Table 1). The C–O bond lengths with the electronegativities of the substituents (in opposition to the Ge–O bond), giving always larger values than those for the C–O bond lengths in the titanium compounds. As a test of the reliability of the DFT results, Table 1 compares the DFT data with the MP2 data. The results of the two methods are in good agreement, though Ti–O and Ge–O bond lengths are shorter and C–O bond lengths are longer at the MP2 level. The geometrical data strongly suggest multiple bonding for the linear titanium alkoxide complexes and single Ge–O bonds for the germanium alkoxide complexes.

Electronic Properties. The overall electronic picture of the titanium and germanium compounds was evaluated by NBO methods, AIM theory, and ELF topology analyses. The numerical results are presented in Tables 2–6. The multiple-bonding nature identified in the titanium alkoxide compounds and not in the germanium alkoxide compounds is clearly seen in the results of the electronic analyses. The results obtained with the NBO methods are given in Table 2, in which the NLMO values are summarized. The multiple bonding in the titanium compounds (1–4) unmistakably...
Table 4. Electron Charge Densities, $\rho(r)$, Laplacians of the Charge Densities, $\nabla^2 \rho(r)$, and Geometrical Dispositions for the Maxima on $-\nabla^2 \rho(r)$ in the Ge, Ti, and O Atoms at the B3LYP/6-311G* Theoretical Level

<table>
<thead>
<tr>
<th></th>
<th>$\rho(r)$ (e/a^3)</th>
<th>$\nabla^2 \rho(r)$ (e/a^5)</th>
<th>dist (Å)</th>
<th></th>
<th>$\rho(r)$ (e/a^3)</th>
<th>$\nabla^2 \rho(r)$ (e/a^5)</th>
<th>dist (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 at Ti</td>
<td>1.446</td>
<td>-12.215</td>
<td>0.406</td>
<td>5 at Ge</td>
<td>1.016</td>
<td>-140.668</td>
<td>0.249</td>
</tr>
<tr>
<td>2 at Ti</td>
<td>1.512</td>
<td>-14.671</td>
<td>0.402</td>
<td></td>
<td>1.501</td>
<td>-14.518</td>
<td>0.402</td>
</tr>
<tr>
<td>2 at O</td>
<td>1.548</td>
<td>-15.139</td>
<td>0.401</td>
<td></td>
<td>1.402</td>
<td>-11.441</td>
<td>0.407</td>
</tr>
<tr>
<td>3 at Ti</td>
<td>1.403</td>
<td>-11.794</td>
<td>0.407</td>
<td>6 at Ge</td>
<td>1.012</td>
<td>-137.869</td>
<td>0.250</td>
</tr>
<tr>
<td>3 at O</td>
<td>1.420</td>
<td>-11.441</td>
<td>0.407</td>
<td>4 at Ge</td>
<td>1.019</td>
<td>-140.771</td>
<td>0.249</td>
</tr>
<tr>
<td>4 at Ti</td>
<td>1.377</td>
<td>-11.469</td>
<td>0.407</td>
<td></td>
<td>1.447</td>
<td>-12.350</td>
<td>0.406</td>
</tr>
<tr>
<td>4 at O</td>
<td>1.447</td>
<td>-12.350</td>
<td>0.406</td>
<td></td>
<td>1.400</td>
<td>-11.573</td>
<td>0.407</td>
</tr>
</tbody>
</table>

	1.400	-11.573	0.407		1.430	-11.951	0.407
	1.385	-10.781	0.409				
3 at O	0.859	-3.844	0.352	7 at O	0.936	-4.815	0.343
	0.703	-2.440	0.378	5 at O			
4 at Ti	1.406	-11.607	0.407	8 at Ge	10.070	-136.040	0.250
	1.423	-11.826	0.407				
	1.401	-11.533	0.407				
	1.377	-10.664	0.409				
4 at O	0.859	-3.845	0.352	8 at O	0.935	-4.806	0.343
	0.703	-2.442	0.378				

| | | | | | | | |

- a Distance from the maximum to its corresponding atom. b This maximum has an additional equivalent one. c This maximum has two additional equivalent ones.

Table 5. AIM and NBO (in Parentheses) Atomic Charges and Delocalization Indices, δ(Ti,O) and δ(Ge,O), for the Titanium (1–4) and Germanium (5–8) Compounds at the B3LYP/6-311G* Theoretical Level

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ(Ti,O)</td>
<td>1.82</td>
<td>2.29</td>
<td>1.94</td>
<td>1.87</td>
<td>1.55</td>
<td>2.47</td>
<td>1.90</td>
<td>1.67</td>
</tr>
<tr>
<td>at O</td>
<td>-1.08</td>
<td>-1.09</td>
<td>-1.05</td>
<td>-1.06</td>
<td>-1.12</td>
<td>-1.08</td>
<td>-1.09</td>
<td>-1.09</td>
</tr>
<tr>
<td>δ(Ge,O)</td>
<td>0.44</td>
<td>0.45</td>
<td>0.43</td>
<td>0.43</td>
<td>0.44</td>
<td>0.39</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>at C</td>
<td>0.44</td>
<td>0.45</td>
<td>0.43</td>
<td>0.43</td>
<td>0.44</td>
<td>0.39</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>at H</td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>at OCH$_3$</td>
<td>-0.46</td>
<td>-0.49</td>
<td>-0.41</td>
<td>-0.42</td>
<td>-0.62</td>
<td>-0.56</td>
<td>-0.53</td>
<td>-0.55</td>
</tr>
<tr>
<td>δ(Ti,O)</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>δ(Ge,O)</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

$Y = H, F, Cl, Br.$

shows the characteristics of a triple bond as described in the Hückel model. Three bonding molecular orbitals (MOs) are observed, each displaying clear ionic character. As expected, one MO is a σ Ti–O bond formed between an sp atomic orbital (AO) of oxygen and the empty sd$_3$ hybridized AO of titanium. The two remaining MOs display π character with interaction between the empty d AOs of Ti and the occupied p orbitals of O. In every compound, the C–O bond appears as a normal single σ bond.

The Ge–O bond in compounds 5–8 is totally different. The NBO analyses show only one MO, again of a very ionic character. The MO is formed by sp3 AOs of Ge and O. There are also two additional electron lone pairs for oxygen. The C–O bonds clearly exhibit single-σ-bond character.

The results obtained by the AIM method are collected in Tables 3–5 and illustrated in Figure 2. The numerical values of the bond critical points (BCPs) in $\rho(r)$ imply stronger bonds for Ti–O than for Ge–O (see Table 3). In both series, the metal–oxygen bonds are of closed-shell interaction type (highly polarized character). However, a small covalent character is proposed on the basis of the negative electron energy density values. This is also corroborated for the $|\lambda_{ij}/\lambda_{jj}|$ values in the Ti–O bond critical points (values of ca. 0.19 compared with ca. 0.15 for alkali metal halides35). The geometrical effects associated with the metal substituents (see above) can be rationalized in terms of the numerical values of the bond critical points in $\rho(r)$. Both single and triple bonds are compatible with the numerical bond critical point data. However, a different representation is obtained in the $\nabla^2 \rho(r)$ topology study. The numerical data summarized in Table 4 give the electron density concentration maxima surrounding the metal and oxygen for compounds 1–8. For the titanium compounds, four maxima are found, one of them on the C$_j$ symmetry axis toward the carbon atom and the three additional ones in a plane.

(35) See ref 12, p 291.
Table 6. ELF Analysis Including Basins, Populations, and Cross-Exchange Contributions of the Core Metal Basins, for Compounds 1 and 5 at the B3LYP/6-311G* Theoretical Level

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cross-exchange contribs</td>
<td></td>
<td></td>
<td>cross-exchange contribs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(Ti)</td>
<td>19.29</td>
<td>0.33</td>
<td></td>
<td>V(Ti,H)</td>
<td>1.70</td>
<td>0.33</td>
<td></td>
<td>C(Ge)</td>
</tr>
<tr>
<td>V(Ge,H1)</td>
<td>2.12</td>
<td>0.29</td>
<td></td>
<td>V(Ge,H2)</td>
<td>2.12</td>
<td>0.28</td>
<td></td>
<td>V(O,C)</td>
</tr>
<tr>
<td>V(Ge,O)</td>
<td>2.13</td>
<td>0.00</td>
<td></td>
<td>V(C)</td>
<td>2.16</td>
<td>0.02</td>
<td></td>
<td>V(0)</td>
</tr>
<tr>
<td>C(O)</td>
<td>2.13</td>
<td>0.00</td>
<td></td>
<td>V(C,H)</td>
<td>2.03</td>
<td>0.01</td>
<td></td>
<td>V(O)</td>
</tr>
<tr>
<td>C(C)</td>
<td>2.09</td>
<td>0.00</td>
<td></td>
<td>C(C)</td>
<td>2.09</td>
<td>0.00</td>
<td></td>
<td>C(C)</td>
</tr>
<tr>
<td>V(C,H1)</td>
<td>2.04</td>
<td>0.00</td>
<td></td>
<td>V(O,C)</td>
<td>2.04</td>
<td>0.00</td>
<td></td>
<td>V(C,H2)</td>
</tr>
</tbody>
</table>

a C corresponds to core and V to valence.

perpendicular to the C3 symmetry axis toward the Ti atom. There are also four maxima for the Ge compounds, two of them on the C–O and Ge–O bonds and two compatible with a two-electron pair at oxygen atom. The features described above are depicted in Figure 2.

For the titanium compounds (1–4), the description of the electron charge concentration surrounding the oxygen and directed toward the Ti atom, together with the one single maximum in the C–O bond, favors a triple bond. The description of the Ge–O bond, on the other hand, matches that of a standard single bond. No doubt, the triple-bond formation for the titanium compounds is due to hypovalency. In addition, four inner electron concentration maxima were found in the titanium atom environment, directed away from the four ligands bonded to titanium. These maxima were associated with the titanium third shell (the core distortion was first noted by Bader,21,22,36 The charges on the metal atoms indicate an electron donation from the ligand (see Table 5). All the charges lie in the same range. A higher electron donation was observed from the methoxide group to titanium than to germanium (with methoxide group charges of ca. −0.45 for the Ti compounds in comparison with ca. −0.57 for the Ge compounds). The larger stabilization in the titanium series due to higher electron donation is also reflected in the charge differences between the Ti atoms in 1 and 2, increased by 0.47 compared with 0.92 for 5 and 6 when the H atoms are replaced by F ones.

The quantum mechanical pair density, in conjunction with the quantum definition of an atom in a molecule, provides a precise determination of the extent to which electrons are localized in a given atom and delocalized over any pair of atoms.37 The electron pairing is a consequence of the Pauli exclusion principle, and the extent of spatial localization of the pairing is determined by the corresponding property of the Fermi hole density. These ideas are made quantitative through the appropriate integration of the pair density to determine the total Fermi correlation contained within a single atomic basin, F(A,A), or the correlation shared between two basins, F(A,B). The quantity F(A,B) is thus a measure of the extent to which electrons of either spin referenced to atom A are delocalized onto atom B with a corresponding definition of F(B,A). Thus,

\[F(A,B) = F(B,A) = -\sum_i \sum_j S_i(A) S_j(B) \]

where \(S_i(A) \) is the corresponding atomic overlap matrix given by the PROAIM program.31 The calculated \(\delta(Ti,O) \) and \(\delta(Ge,O) \) values for compounds 1–8 are listed in Table 5. The \(\delta(Ti,O) \)
values are considerably higher than the corresponding δ(Ge, O)
values (ca. 1.0 and 0.7 electron pair, respectively). Taking into
account the very polarized nature\(^{(38)}\) of the bonds, the values are
consistent with Ti\cdotsO multiple bonds and with noticeable
covalent character.

The ELF has proven to be effective tool in studying chemical
bonds.\(^{(39)}\) Data for compounds 1 and 5 are collected in Table 6,
and ELF plots are shown in Figure 3. For compound 1, two
valence basins were found on the O atom, one disynaptic and
the other one monosynaptic.\(^{(40)}\) The population of the monosyn-
aptic basin is close to 6 electrons, corresponding to the three
electron pairs on oxygen. This basin has a semispherical shape,
rounding the O atom and situated toward the Ti core (see Figure
3), characteristic of a triple bond, though a very polarized one.
In addition, the cross-exchange between the Ti core basin, C(Ti),
and the O monosynaptic valence basin, V(O), is large, even
larger than that for the valence titanium hydrogen basins,
V(Ti,H) (see Table 6). This indicates a net electronic exchange
between the electron pair on O and the Ti atom.

On the other hand, compound 5 displays four valence basins
on the oxygen atom, two of them disynaptic (V(Ge, O) and
V(O,C)), corresponding to the Ge\cdotsO and O\cdotsC bonds. The two
remaining monosynaptic V(O) basins belong to the other
electron pairs on the O atom. The above valence basin
distribution corresponds to a bent Ge\cdotsO\cdotsC geometry (see
Figure 3). This represents a standard Ge\cdotsO single bond. In
addition, the cross-exchange between the Ge core, C(Ge), and
the oxygen valence, V(O), basins is very small, indicating a
low stabilization of the Ge charge by the methoxide group.

Conclusions. The linear disposition of \angleTi\cdotsO\cdotsC angles in
the series of titanium alkoxides (1\cdots4) has been rationalized by
a polarized triple Ti\cdotsO bond, on the basis of electronic analyses
including NBO, ELF, AIM, and electron delocalization indexes.
On the other hand, the 18-electron germanium series of
compounds (5\cdots8) presented bent \angleGe\cdotsO\cdotsC angles compatible
with a standard single Ge\cdotsO bond, with two additional electron
lone pairs on the oxygen atom.

Acknowledgment. Computing time was provided by the
Centre of Scientific Computing, Espoo, Finland, and the
University of Granada. We are grateful to professor R. F. W.
Bader for a copy of the AIMPAC package of programs.

\(^{(38)}\) The formal δ value for a pure ionic bond is zero.

\(^{(40)}\) The valence basins are characterized by their synaptic order which is
the number of core basins with which they share a common boundary.
Accordingly, a basin may be mono-, di-, or polysynaptic corresponding
to a lone pair, bicentric, or polycentric bonding region, respectively.

\(^{(41)}\) MORPHY98 is a program written by P. L. A. Popelier with a