The following three geometrical structures on a manifold are studied in detail:

Leibnizian: a nonvanishing one-form V plus a Riemannian metric $\langle \cdot , \cdot \rangle$ on its annihilator vector bundle. In particular, the possible dimensions of the automorphism group of a Leibnizian G-structure are characterized.

Galilean: Leibnizian structure endowed with an affine connection ∇ which parallelizes V and $\langle \cdot , \cdot \rangle$. For any fixed vector field of observers Z, an explicit Koszul-type formula which reconstructs bijectively all the possible ∇’s from the gravitational G and vorticity $\omega = \frac{1}{2} \text{rot} Z$ fields (plus eventually the torsion) is provided.

Newtonian: Galilean structure with $\langle \cdot , \cdot \rangle$ flat and a field of observers Z which is inertial (its flow preserves the Leibnizian structure and $\omega = 0$). Classical concepts in Newtonian theory are revisited and discussed.

sible dimensions of the group of automorphisms of a Leibnizian space–time? How many Galilean
connections admit a Leibnizian structure? Is there an explicit way to construct them? The answers
to such questions are interesting also from the physical viewpoint. The cornerstone of our ap-
proach can be stated as follows (see Lemma 25, Theorem 27, and Corollary 28): *given a Leibni-
ziian space–time, a field of observers \(Z \) and an (unknown) Galilean connection \(\nabla \), the gravita-
tional field \(G \) and the vorticity/Coriolis field \(\omega \) measured by \(Z \) (plus, eventually, any skew-
symmetric tensor \(T \) representing the torsion, subject to the restriction \(\Omega^\nabla \circ T = 0 \)) permit us to recon-
struct univocally the connection \(\nabla \).* Even though partial versions of this result are well-known (ad
nauseam if \(\langle \cdot, \cdot \rangle \) is flat and \(Z \) determines an "inertial reference frame"), the full result is new, as
far as we know. In fact, it relies on formula (13), which plays a similar role to Koszul's formula
in semi-Riemannian geometry, and introduces a type of "sub-Riemannian" geometry with interest
of its own. Then, classical Newtonian concepts are revisited under this viewpoint.

In the comparison with classical geometrizations of Newtonian theory (see, e.g., Refs. 21, 13,
Box 12.4, and 5), where one assumes first that the space is flat and then some sort of assumptions
to make inertial references frames appear, the advantages of our approach become apparent not
only for its bigger generality but also for the sake of clarity: the detailed study of the structures at
each level Leibnizian/Galilean/Newtonian clarifies both the mathematical results and the physical
interpretations. It is also worth pointing out that Kunzle and some co-workers\(^{11,12,4}\) have also
studied some Leibnizian structures; in fact, they call \((M, \Omega, \langle \cdot, \cdot \rangle)\) with \(\Omega \) closed "Galilei struc-
ture" and the corresponding compatible connections "Galilei connections." Nevertheless, our
constructive procedure of all Galilean connections and associated physical interpretations go fur-
ther [see Remark 29(2)]. (In fact, our study led us to put different names to the structures depend-
ing on if \(\nabla \) was fixed or not, as in Ref. 5. The names Leibnizian, Galilean and Newtonian are
suggested by some famous historical facts—Galilean studies on freely moving bodies, controversy
between Leibniz and Newton, and Newton's discussion of the spinning water-bucket.)

The present article is divided into three parts. In the first one (Sec. II), the properties of pure
Leibnizian structures are studied. Leibnizian vector fields and fields of Leibnizian observers
(FLOs) are introduced, as infinitesimal generators of automorphisms. In Theorem 8, the possible
dimensions of these vector fields are characterized, in agreement with some known properties of
classical kinematical group.

The second part (Sec. III) is devoted to Galilean structures. Apart from the commented results
on our Koszul-type formula (13), we introduce both Galilean vector fields and fields of Galilean
observers (i.e., the corresponding Leibnizian fields which preserve infinitesimally the connection
\(\nabla \)), see Table I. In Sec. III C, coordinate expressions for the connection, geodesics and curvature
(for coordinates adapted to general fields of observers as well as more restricted ones: Leibnizian,
Galilean or inertial) are also provided.

Finally, in the third part (Sec. IV) the Newtonian case is specifically revised, discussing the
classical concepts. In fact, our definition of Newtonian space–time is a Galilean one which admits
an inertial field of observers and with \(\langle \cdot, \cdot \rangle \) flat. This definition avoids conditions at infinity,
which are discussed in relation to the properties of gravitational fields and the uniqueness of
Poisson's equation. Even though from the mathematical viewpoint the results are clearer when
nonsymmetric connections are also taken into account [see Remark 29(1)], we restrict to symmetric
connections for physical concepts or coordinate expressions, in particular along all the third
part.

II. LEIBNIZIAN STRUCTURES

A. Leibnizian space–times

1. Setup

A Leibnizian space–time is a triad, \((M, \Omega, \langle \cdot, \cdot \rangle)\), consisting of a smooth connected manifold
\(M \), of any dimension \(m = n + 1 \geq 2 \), a differential one-form \(\Omega \in \Lambda^1(M) \), nowhere null \(\Omega_p \neq 0, \forall p \in M \), and a smooth, bilinear, symmetric and positive definite map
TABLE I. Semi-Riemannian versus Leibnizian/Galilean.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Semi-Riemannian, ((M,g))</th>
<th>Leibnizian, ((M,\Omega,\langle\cdot,\cdot\rangle))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>(\dim M = m), index (g = s)</td>
<td>(\dim M = m = (n + 1))</td>
</tr>
<tr>
<td>Structural group</td>
<td>Orthonormal, (O(m))</td>
<td>Galilean, (G_n(R))</td>
</tr>
<tr>
<td>Dimension</td>
<td>(\dim O(m) = m(m-1)/2)</td>
<td>(\dim G_n(R) = m(m-1)/2)</td>
</tr>
<tr>
<td>Infinitesimal automorphisms</td>
<td>Killing vector fields</td>
<td>Leibnizian vector fields</td>
</tr>
<tr>
<td>Possible dimensions</td>
<td>(0,1,\ldots,m(m+1)/2)</td>
<td>Possible dimensions, (d\Omega = 0):</td>
</tr>
<tr>
<td>Possible connections (\nabla) which parallelize the structure</td>
<td>Determined by all torsion tensors, bijective correspondence: (\nabla) connections (\Gamma) two-covariant (\Gamma) one-contravariant skew-symmetric (\Gamma) tensors Unique connection without torsion (Levi-Civita)</td>
<td>Determined by: (\Omega), (\text{Tor} = d\Omega). (\text{Tor} = \nabla Z) and (\omega = \text{rot} Z) (\Omega) (\text{Tor} = 0) (\exists d\Omega = 0)</td>
</tr>
<tr>
<td>Fixed a connection (\nabla) which parallels the structure</td>
<td>Canonical, (\text{Tor} = 0) Killing = Affine</td>
<td>Even if (\text{Tor} = 0), Leibnizian+ Affine Galilean vector fields: Leibnizian+ affine Dimension Galilean: (0,1,\ldots,m(m+1)/2)</td>
</tr>
</tbody>
</table>

\[\langle \cdot, \cdot \rangle : \Gamma(\text{an}\Omega) \times \Gamma(\text{an}\Omega) \to C^\infty(M), \quad (V, W) \mapsto \langle V, W \rangle, \]

where \(\text{an}\Omega = \{ v \in TM | \Omega(v) = 0 \}\), is the \(n\)-distribution induced by \(\Omega\), and the symbol \(\Gamma\) denotes the corresponding vector fields, so \(\Gamma(\text{an}\Omega) = \{ V \in \Gamma(TM) | V_p \in \text{an}\Omega, \forall p \in M \} \). [As usual, \(M\) will be assumed Hausdorff and paracompact; “smooth” will mean \(C^\infty\) (even though \(C^1\) is enough).] Summing up, the Leibnizian structure on \(M\) is the nonvanishing one-form \(\Omega\) plus the Riemannian vector bundle \((\text{an}\Omega, \langle \cdot, \cdot \rangle)\).

Note: Let the superscript \(^*\) denote dual space. For any \(p \in M\) there exists a canonical isomorphism between \((\text{an}\Omega_p)^*\) and the quotient vector space \((T_p M)^*/\text{Span}\Omega_p\). Therefore, the metric \(\langle \cdot, \cdot \rangle_p\) induces a canonical Euclidean product on \((T_p M)^*/\text{Span}\Omega_p\), as well as a positive semidefinite metric on \((T_p M)^*\), with radical generated by \(\Omega_p\). Thus, a Leibnizian structure is equivalent to a degenerate semidefinite positive metric of constant rank \(n\) in the cotangent bundle \(TM^*\), plus a one-form generating its radical. In Ref. 1, an *anti-Leibnizian* structure on \(M\) is defined as a degenerate semidefinite positive metric of constant rank \(n\) in the tangent bundle \(TM\), plus a vector field \(Z\) generating its radical. Thus, the study of anti-Leibnizian structures is analogous (dual) to the study of the Leibnizian ones.

According to Ref. 1, Euclidean space \((\text{an}\Omega_p, \langle \cdot, \cdot \rangle_p)\) is called the absolute space at \(p \in M\), and the linear form \(\Omega_p\) is the absolute clock at \(p\). A tangent vector \(Z_p \in T_p M\) is timelike, if \(\Omega_p(Z_p) \neq 0\) (spacelike, otherwise). If, additionally, \(\Omega_p(Z_p) > 0\) [resp. \(\Omega_p(Z_p) < 0\)], \(Z_p\) points out the future (resp. the past). Any normalized timelike vector \(Z_p\) [that is, with \(\Omega_p(Z_p) = 1\)] is a standard timelike unit (or instantaneous observer) at \(p\); any (ordered) orthonormal base of the absolute space at \(p\) is a set of standard spacelike units at \(p\).

Let us introduce definitions for the concepts of observer and field of observers (or reference frame) analogous to the Lorentzian ones; compare with Ref. 17, Chap. 2. An observer is a smooth curve, \(\gamma : I \to M\), \(I \subseteq \mathbb{R}\), interval), such that its velocity is always a standard timelike unit, \(\Omega_{\gamma'(s)}(\gamma'(s)) = 1\), \(\forall s \in I\). The parameter of this curve is the proper time of the observer \(\gamma\). A field of (instantaneous) observers (FO) is a vector field \(Z \in \Gamma(TM)\) with \(\Omega(Z) = 1\), that is, integral curves of \(Z\) are observers. The existence of a FO on any Leibnizian space-time is straightforward from the paracompactness of \(M\). [Conversely, if we assume the existence of a FO, then Lemma 25 and Remark 26 permit us to construct an affine connection on \(M\); thus, we could deduce the
Definition 1: Let $(M,\Omega,\langle \cdot,\cdot \rangle)$ a Leibnizian space–time and (U',t,x^1,\ldots,x^n) a coordinate system in M. (U',t,x^1,\ldots,x^n) is adapted to the absolute space if

$$\Omega(\partial_i)=0, \quad \forall i \in \{1,\ldots,n\}$$

(in particular, hypersurfaces $t=\text{const}$ are integral manifolds of the distribution $\text{an}\Omega$).

Given a FO, $Z \in \mathcal{Z}(M)$, (U',t,x^1,\ldots,x^n) is adapted to Z if, on U',

$$\partial_t=Z \quad \text{and} \quad \Omega=dt.$$

If the chart is adapted to the absolute space, then $\Omega=\Omega(\partial_t)dt$; if it is adapted to Z, then it is adapted to the absolute space too. Clearly, if (U',t,x^1,\ldots,x^n) is adapted to the absolute space (resp. to a Z), then $\Omega\wedge d\Omega=0$ (resp. $d\Omega=0$) on U'. The converse also holds; in fact, the following result yields adapted charts constructively.

Proposition 2: Let Z be a FO on a Leibnizian space–time $(M,\Omega,\langle \cdot,\cdot \rangle)$. Fix a chart (U',y^0,\ldots,y^n) such that $\partial_{y^0}=Z|_U$, and put

$$V_k=P^Z(\partial_{y^k}) \in \text{an}\Omega, \quad \forall k \in \{1,\ldots,n\},$$

with P^Z in (1). Then

(i) (Z,V_1,\ldots,V_n) is a local base of vector fields (moving frame) with $\Omega(V_k)=0$ and
Thus, such coordinates are adapted to the absolute space ~ is enough to apply classical Frobenius’ theorem.

\(\tilde{\Omega} = \tilde{\Omega}(\tilde{\partial}_t)dt, \quad \tilde{\partial}_k = V_k, \quad \forall k \in \{1, \ldots, n\}. \)

Thus, such coordinates are adapted to the absolute space.

(ii) If \(d\tilde{\Omega} = 0 \), then, at some neighborhood \(U' \) of each \(p \in U \), there exist coordinates \((t, x^1, \ldots, x^n)\) satisfying on \(U' \):

\(\tilde{\Omega} = \tilde{\Omega}(\tilde{\partial}_t)dt, \quad \tilde{\partial}_k = V_k, \quad \forall k \in \{1, \ldots, n\}. \)

(iii) If \(d\tilde{\Omega} = 0 \), then, in addition to (ii), one has

\(\tilde{\partial}_t = Z, \)

on \(U' \) (i.e., the coordinates are adapted to \(Z \)).

Proof: (i) Obvious.

(ii) As the distribution \(\text{an}\tilde{\Omega} \) is involutive, \(\tilde{\Omega}(\tilde{V}_i, \tilde{V}_j) = 0 \) and, from (2), \(\tilde{[V}_i, \tilde{V}_j] = 0 \). Thus, it is enough to apply classical Frobenius’ theorem (see, for example, Ref. 23 Chap. 1).

(iii) By using (3), one checks \([Z, \tilde{V}_j] = 0 \) and, again, the result follows from Frobenius’ theorem. \(\square \)

From now on, Latin indexes \(i, j, k \) will vary in \(1, \ldots, n \). We will simplify the notation, too:

\(\tilde{\partial}_i = \partial_k. \)

3. Galilean group at a point

Fix \(p \in M \). An (ordered) base \(B = (Z_p, e_1, \ldots, e_n) \) of \(T_pM \) is a Galilean base at \(p \) if \(\Omega(Z_p)_p = 1 \) and \(\{e_1, \ldots, e_n\} \) is an orthonormal base of \(\text{an}\Omega_p \), that is, if \(Z_p \) is a standard timelike unit at \(p \) and \(e_1, \ldots, e_n \) are standard spacelike units.

A Galilean transformation at \(p \) is a linear map, \(A: T_pM \rightarrow T_pM \), which maps some (and thus, any) Galilean base onto a Galilean base. Or, equally, \(\Omega_p(A(X_p)) = \Omega_p(X_p) \) and \(\langle A(V_p), A(W_p) \rangle_p = \langle V_p, W_p \rangle_p, \forall X_p \in T_pM, \forall V_p, W_p \in \text{an}\Omega_p \). The group of all such transformations will be called the Galilean group at \(p \).

Matricial Galilean group \(G_m(\mathbb{R}), m = n + 1 \), is the group of the matrices

\[
\begin{pmatrix}
1 & 0 \\
a & A
\end{pmatrix}, \quad \text{where} \quad a = \begin{pmatrix} a^1 \\ \vdots \\ a^n \end{pmatrix} \in \mathbb{R}^n \quad \text{and} \quad A \cdot A^t = I_n
\]

(4)

(\(A \) is an orthogonal matrix \(n \times n \)).

It is straightforward to check that, given a Galilean base \(B \) and any other base \(B' = (Z'_p, e'_1, \ldots, e'_n) \) in \(T_pM \), the base \(B' \) is Galilean if and only if the transition matrix belongs to \(G_m(\mathbb{R}) \), that is,

\[
Z_p' = Z_p + \sum_{i=1}^{n} a^i e_i, \quad e'_j = \sum_{i=1}^{n} a^i e_i, \quad \forall j \in \{1, \ldots, n\},
\]

where \(A = (a^i) \) is an orthogonal matrix. In this case, \(v = \sum a^i e_j \) is the velocity of \(Z'_p \) measured by \(Z_p \).

B. Leibnizian vector fields

1. Automorphisms of Leibnizian G-structures

Let \(LM \) be the linear frame bundle of \(M \), that is, each element of \(LM \) can be seen as a (ordered) base of the tangent space at some point of \(M \). The Leibnizian structure \((\Omega, \langle \cdot, \cdot \rangle) \) on \(M \) determines the fiber bundle of all the Galilean bases \(GM \subset LM \). As \(G_m(\mathbb{R}) \) acts freely and transively on each fiber, \(GM \) is a \(G \)-structure with \(G = G_m(\mathbb{R}) \) [i.e., a principal fiber bundle with structural group \(G_m(\mathbb{R}) \), obtained as a reduction of \(LM \)]. Recall that the set of the orthonormal
bases for any semi-Riemannian metric (in particular, Riemannian or Lorentzian) is a well-known example of G-structure; the dimension of its structural group is equal to the dimension of $G_m(R)$, i.e., $m(m-1)/2$ ($m = n + 1$). G-structures have mathematical interest in their own right (see, for example, Ref. 9), and we will be interested in two properties of Leibnizian G-structures with striking differences with respect to the semi-Riemannian case: their infinitesimal automorphisms (studied below) and the set of all the compatible affine connections (Sec. III B).

An infinitesimal automorphism of a G-structure is a vector field K generating a group of automorphisms of the principal fiber bundle. In the semi-Riemannian case, such a K is called a Killing vector field. In the Leibnizian one, the following definition is equivalent.

Definition 3: Given $(M, \Omega, \langle \cdot, \cdot \rangle)$, a vector field $K \in \Gamma(TM)$ is Leibnizian (Killing) if its local flows ψ_s preserve the absolute clock and space, that is,

$$\psi_s^* \Omega = \Omega \quad \text{and} \quad \psi_s^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle.$$

Leib$(M) = \text{Leib}(M, \Omega, \langle \cdot, \cdot \rangle)$ will denote the set of all the Leibnizian vector fields.

As L_K, the Lie derivative along K, can be recovered from the local flows of K, the following characterizations of Leibnizian vector fields are straightforward.

Proposition 4: Let $(M, \Omega, \langle \cdot, \cdot \rangle)$ be a Leibnizian space–time, and $K \in \Gamma(TM)$ be a vector field. The following assertions are equivalent:

1. K is a Leibnizian vector field.
2. $L_K \Omega = 0$ and $L_K \langle \cdot, \cdot \rangle = 0$.
3. The following two properties hold:
 (a) $\Omega([K, Y]) = K(\Omega(Y))$, $\forall Y \in \Gamma(TM)$ [equally: $-d\Omega(K, Y) = Y(\Omega(K))$].
 (b) $K(\langle V, W \rangle) = \langle [K, V], W \rangle + \langle V, [K, W] \rangle$, $\forall V, W \in \Gamma(\alpha \Omega)$.

In particular, Leib(M) is a Lie algebra.

Remark 5: (1) The right hand side of $3(b)$ makes sense [i.e., $[K, V], [K, W] \in \Gamma(\alpha \Omega)$] when $3(a)$ holds.

(2) When $d\Omega = 0$, property $3(a)$ holds if and only if $\Omega(K) = cte$. We will put then, for each $c \in \mathbb{R}$,

$$\text{Leib}_c(M) = \{ K \in \text{Leib}(M) | \Omega(K) = c \} \quad (5)$$

(clearly, the relevant cases will be $c = 0, 1$).

(3) As we will see, the dimension of Leib(M) may be infinite. This was expected from a purely algebraic viewpoint: a straightforward computation from (4) shows that the Lie algebra $G_m(R)$ contains elements of rank 1 and, thus, this algebra is of finite type (see Ref. 9, Proposition 1.4). As a consequence, the automorphisms of a Leibnizian manifold are not necessarily a (finite dimensional) Lie group.

2. Fields of Leibnizian observers

Consider now the case that Z is a field of Leibnizian observers (FLO), that is, $Z \in \mathbb{Z}(M)$, and Z is Leibnizian. (The name of rigid vector fields is also natural for FLO’s, see Ref. 17, Sec. 2.3). We will be interested in the classical interpretations of these vector fields; thus, we assume now $d\Omega = 0$. According to formula (5) the set of all the FLOs will be denoted as Leib$_1(M)$.

From Proposition 2, given $Z \in \mathbb{Z}(M)$ a chart (t, x^1, \ldots, x^n) adapted to Z exists. Put

$$h_{ij} = \langle \partial_i, \partial_j \rangle, \quad h = \langle \cdot, \cdot \rangle.$$

The following characterization of the FLOs is immediate from its definition and Proposition 4.

Proposition 6: Let $(M, \Omega, \langle \cdot, \cdot \rangle)$ be a Leibnizian space–time with $d\Omega = 0$ and $Z \in \mathbb{Z}(M)$. The field of observers Z is a FLO if and only if for each $p \in M$ there exists a chart (t, x^1, \ldots, x^n) adapted to Z such that
\[\partial_i h_{ij} = 0, \quad \forall i, j \in \{1, \ldots, n\}. \]

Remark 7: Of course, in this case equality (6) holds for any chart adapted to \(Z \). Thus, the FLOs are those fields of observers satisfying the following: their observers see that, locally, the metric \(\langle \cdot, \cdot \rangle \) does not change with the local absolute time \(t \) (they are always at the same distance of the neighboring observers).

3. Main result

Now, let us characterize the dimension of the Lie algebra \(\text{Leib}(M) \). For simplicity, we will assume the existence of a globally defined time function \(T \) (of course, the results hold locally if only \(d\Omega = 0 \)).

Notice first that \(\text{Leib}_1(M) \) may be empty [and then \(\text{Leib}(M) = \text{Leib}_0(M) \)], no matter the dimension of \(\text{Leib}_0(M) \) be. Recall also that a vector field \(Z \in \Gamma(TM) \) is called complete if it admits a globally defined flow \(\phi \), i.e., \(\phi_t: M \rightarrow M \), for all \(t \in \mathbb{R} \) [for \(Z \in \mathcal{Z}(M) \), one can say, equally, that the—inextendable—observers in \(Z \) are defined on all \(\mathbb{R} \)].

Theorem 8: Consider the Leibnizian space–time \((M, dT, \langle \cdot, \cdot \rangle)\).

1. \((a) \) Let \(K \in \text{Leib}_0(M) \) be. The restriction of \(K \) to each hypersurface \(T = T_0 \) (constant) is a Killing vector field of the Riemannian manifold \((T^{-1}(T_0), \langle \cdot, \cdot \rangle) \).
2. \((b) \) If \(\text{Leib}_1(M) \neq \emptyset \), then \(\dim(\text{Leib}_0(M)) = \infty \).
3. \((a) \) There exists a complete FLO, \(Z \in \text{Leib}_1(M) \), where we have the following.
4. \((b) \) If one of the \(T^{-1}(T_0) \) admits a Killing vector field \(K_0(\neq 0) \), then \(\dim(\text{Leib}_0(M)) = \infty \).

Proof: (1) Assertion \((a)\) is obvious. For \((b)\) take any \(K \in \text{Leib}_0(M) \). Notice that, for any function \(a: \mathbb{R} \rightarrow \mathbb{R} \), the vector field

\[K^a(p) = a(T(p))K(p), \quad \forall p \in M, \]

satisfies \(K^a \in \text{Leib}_0(M) \) too. If \(K \neq 0 \), one can choose a neighborhood \(U \) where \(K \) does not vanish, and some interval \([T_1, T_2] \), \(T_1 < T_2 \) included in \(T(U) \). Now, just take infinite independent functions \(a(T) \) vanishing outside of \([T_1, T_2] \).

(2) Obvious.

(3) For \((a)\) recall that the flow \(\phi_t \) of \(Z \) generates an isometry between \(T^{-1}(T_0) \) and \(T^{-1}(T_0 + t), \forall t \in \mathbb{R} \). For \((b)\), we have just to find some \(K \in \text{Leib}_0(M) \), \(K \neq 0 \) and apply \(1(b) \). Such a vector field can be constructed from \(K_0 \) and the flow of \(Z \) as follows:

\[K_p = d\phi_{T(p) - T_0}(K_0[\phi_{-(T(p) - T_0)}(p)]) \]

(7)

{with the notation: \(K_0[q] = (K_0)_{\phi_q} \), for \(q = \phi_{-(T(p) - T_0)}(p) \).}

Remark 9: Choosing \(M = \mathbb{R} \times S \) (\(S \) any manifold) with \(T: \mathbb{R} \times S \rightarrow \mathbb{R} \) the natural projection, it is not difficult to prove that all the dimensions of \(\text{Leib}_0(M) \) permitted by Theorem 8 can occur. Subtracting a small neighborhood of some point, the importance of the hypothesis of completeness in \((3)\) can be easily verified (even though this result is always true locally, for any FLO).

Moreover, locally, when there exists a FLO and there are \(r \) independent Killing vector fields \(K_{01}, \ldots, K_{0r} \) in the neighborhood of some point at a hypersurface \(T = T_0 \), then infinitely many new FLOs can be constructed, type \(Z^* = Z + \sum a^i(T)K_i \), for any functions \(a^1, \ldots, a^r \) and \(K_i \)'s as in (7). That is, as the time \(T \) varies, all the observers in \(Z^* \) can move in the direction of a spacelike Killing vector field with a speed which depends arbitrarily on \(T \); this generalizes well-known properties of the kinematical group, see Ref. 5.
III. GALILEAN STRUCTURES

A. Galilean space–times

1. Galilean connections

As already commented, a Leibnizian structure has no canonical affine connection associated. Now, affine connections preserving the Leibnizian structure will be studied. The existence of such a fixed connection can be seen as a physical requirement from gauge covariance. In fact, if no connection is fixed, then all the the sections of the principal fiber bundle GM, or Galilean reference frames, are physically equivalent. But, in this case, physical laws as Newton’s second one should be covariant under changes of Galilean reference frames. This forces the existence of a gauge field (i.e., a compatible connection) which restates covariance. Recall that general relativity can also be seen as a gauge theory, where the gauge invariance under different choices of sections in the principle fiber bundle of the orthonormal basis must be preserved. Nevertheless, in this theory the gauge field (the gravitational field) is canonically fixed as the unique torsionless connection of the bundle.

Definition 10: A Galilean connection in a Leibnizian space–time $(M, \Omega, \langle \cdot, \cdot \rangle)$, is a connection ∇ such that its parallel transport maps Galilean bases onto Galilean bases.

A Galilean space–time $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$ is a Leibnizian space–time $(M, \Omega, \langle \cdot, \cdot \rangle)$ endowed with a Galilean connection ∇.

As the connection can be reconstructed from the parallel transport, it is not difficult to check the following characterization.

Proposition 11: An affine connection ∇ on a Leibnizian space–time $(M, \Omega, \langle \cdot, \cdot \rangle)$ is Galilean if and only if the following two conditions hold:

1. $\nabla \Omega = 0$ [i.e., $\nabla_X \Omega = 0$, $\forall X \in \Gamma(TM)$].
2. $\nabla \langle \cdot, \cdot \rangle = 0$, that is, $X \langle V, W \rangle = \langle \nabla_X V, W \rangle + \langle V, \nabla_X W \rangle$, $\forall X \in \Gamma(TM)$, $\forall V, W \in \Gamma(\text{an} \Omega)$.

Remark 12: Item (1) holds if and only if $\Omega(\nabla_X Y) = X(\Omega(Y))$, $\forall Y \in \Gamma(TM)$. Thus, if $\Omega(Y)$ is constant, then $\nabla_X Y \in \Gamma(\text{an} \Omega)$, $\forall X \in \Gamma(TM)$. In particular, this happens if $Y = Z \in \mathcal{Z}(M)$ or if $Y = V, W \in \Gamma(\text{an} \Omega)$; therefore, the right-hand side of item (2) is well defined.

Equally, a Galilean connection can be seen as a connection in the fiber bundle of the Galilean bases GM. As any principal fiber bundle, GM admits connections, but it does not admit necessarily a symmetric connection. Thus, in principle, Galilean connections are not assumed symmetric. Even more, our results on existence of Galilean connections will be mathematically clearer without this restriction. Thus, the torsion

$$\text{Tor}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

which measures the lack of symmetry of the connection, will be relevant. The existence of a symmetric Galilean connection implies restrictions on the one-form Ω, as the following result shows.

Lemma 13: For any Galilean space–time $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$,

$$\Omega \circ \text{Tor} = d\Omega.$$ \hspace{1cm} (8)

Therefore, if there exists a symmetric Galilean connection, then $d\Omega = 0$.

Proof: By using Remark 12,

$$d\Omega(X,Y) = X(\Omega(Y)) - Y(\Omega(X)) = \Omega([X,Y]),$$

which proves (8).
Remark 14: If a G-structure is parallelizable, then it admits a symmetric connection (Ref. 9, Proposition 1.2), but the converse is clearly false. Nevertheless, as we will see in Sec. III B, if $d\Omega = 0$, then there are symmetric connections. Thus, for Leibnizian G-structures one can say: there exists a symmetric connection if and only if “Ω is parallelizable” (i.e., locally $\Omega = dt$).

When $d\Omega \neq 0$, only “connections symmetric for a field of observers” can be defined:

Definition 15: Let $Z \in \mathcal{Z}(M)$ be a FO, and P^Z its associated projection [formula (1)]. A Galilean connection is Z-symmetric, if

$$P^Z \circ \text{Tor} = 0.$$

If $d\Omega = 0$, then $\Omega \circ \text{Tor} = 0$ and, therefore, $P^Z \circ \text{Tor} = \text{Tor}$; that is symmetric and Z-symmetric connections are equal. More precisely, we have the following.

Proposition 16: Let $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$ be a Galilean space–time. The following assertions are equivalent:

1. ∇ is symmetric.
2. $d\Omega = 0$ and, given any point $p \in M$, there exist a neighborhood U and a FO on U, $Z \in \mathcal{Z}(U)$, such that ∇ is Z-symmetric on U.
3. Fix any point $p \in M$; there exists a neighborhood U and two FOs Z, Z' on U, which are independent at p and such that ∇ is Z and Z'-symmetric on U.
4. ∇ is Z-symmetric for any FO, $Z \in \mathcal{Z}(M)$.

Proof: By using Lemma 13 and the above comments, the implications $1 \Rightarrow 2 \Rightarrow 1 \Rightarrow 4 \Rightarrow 3$ are obvious. For $3 \Rightarrow 2$, notice that

$$0 = (P^Z - P^{Z'}) \circ \text{Tor}(v, w) = (Z - Z')_p d\Omega(v, w), \quad \forall v, w \in T_p M.$$

Finally, let us define the following fundamental concepts (see Sec. III A 3 for interpretations).

Definition 17: Let $Z \in \mathcal{Z}(M)$, a FO in a Galilean space–time, $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$. The gravitational field induced by ∇ in Z is the vector field:

$$\mathcal{G} = \nabla Z.$$

The vorticity or Coriolis field induced by ∇ in Z is the skew-symmetric two covariant tensor field $\omega = \frac{1}{2} \text{rot} Z$ defined by

$$\omega(V, W) = \frac{1}{2} \left(\langle \nabla_Y Z, W \rangle - \langle V, \nabla_W Z \rangle \right), \quad \forall V, W \in \Gamma(\text{anf} \Omega).$$

An observer $\gamma : I \to M$, $\Omega(\gamma') = 1$, is freely falling if it is a geodesic for ∇.

Remark 18: Recall that $\Omega(\mathcal{G}) = \Omega(\nabla_Z Z) = Z(\Omega(Z)) = 0$, that is, as the Galilean connection parallelizes Ω, the gravitational field is always spacelike.

Analogously, the definition of ω makes sense because ω is applied only on spacelike vector fields (Remark 12). In general, the rotational of a vector field $\text{rot} X$, as in Definition 17, makes sense when $\Omega(X)$ is constant (in particular, if X is spacelike or a FO) and it is applied on pairs of spacelike tangent vectors.

2. Galilean vector fields

As for the Leibnizian case, vector fields (and, in particular, FOs) with flows preserving the Galilean structure become natural now. Recall first that, given an affine connection ∇, a vector field K with local flows preserving ∇ (i.e., $\mathcal{L}_K \nabla = 0$) is called affine (Killing) and is characterized by the equality

$$[K, \nabla_Y X] = \nabla_{[K,Y]} X + \nabla_Y [K,X], \quad \forall X, Y \in \Gamma(TM)$$

(9)
(when \(K, X\) and \(Y\) are coordinate vector fields, this means that the Christoffel symbols are independent of the coordinate associated to \(K\)).

Definition 19: Given a Galilean structure \((M, \Omega, \langle \cdot, \cdot \rangle, \nabla)\), a vector field \(K \in \Gamma(TM)\) is Galilean (Killing) if \(K\) is Leibnizian for \((M, \Omega, \langle \cdot, \cdot \rangle)\) and affine for \(\nabla\). If, additionally, \(K\) is a FO, then \(K\) is a field of Galilean observers (FGO).

Denote by \(\text{Gal}(M) = \text{Gal}(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)\) the Lie algebra of all the Galilean vector fields. If \(d\Omega = 0\), \(\text{Gal}_1(M)\) will denote the affine space of all the FGOs, in agreement with the notation in Remark 5(2). Although Leibnizian vector fields might have infinite dimension, this cannot hold for the Galilean ones, which are always affine; recall that the maximum dimension for affine vector fields is \(m(m+1)\). Therefore, from the classical results by Palais, the diffeomorphisms of \(M\) preserving the Galilean structure are a (finite dimensional) Lie group, and its associated algebra is the subalgebra of \(\text{Gal}(M)\) generated by its complete vector fields (see, for example, Ref. 10, Vol. I, Note 9). It is not difficult to find the best bound for the dimension of \(\text{Gal}(M)\):

Proposition 20: If \(m = \dim M\), then \(\dim(\text{Gal}(M)) \leq m(m+1)/2\).

Proof: Choose \(p \in M\) and take coordinates \((t, x^1, \ldots, x^n)\) such that the corresponding set of coordinate vector fields \((\partial_{\mu})\) is a Galilean base at \(p\). Each Galilean vector field \(K \in \text{Gal}(M)\) is determined by the values of \(K^n(p)\) and \(\partial_{\mu} K^n(p)\). (This holds for any affine vector field. The proof is analogous to the one for the Killing case in Ref. 22 p. 442-3.) Condition 3(b) of Proposition 4 imposes \(m(m-1)/2\) independent linear equations for the values of \(\partial_{\mu} K^n(p)\); Condition 3(a) fixes the values of \(\partial_{\mu} K^n, \forall \nu \in \{0, 1, \ldots, n\}\), that is, it imposes \(m\) independent conditions more. \(\square\)

Remark 21: This bound for \(\dim(\text{Gal}(M))\) is the best one, as one can check in the standard example: \((\mathbb{R}^{n+1}, dt^2, \langle \cdot, \cdot \rangle_0, \nabla^0)\), \(t\) being the usual projection on the first variable and \(\langle \cdot, \cdot \rangle_0\) (resp. \(\nabla^0\)) the usual metric on each hypersurface (resp. usual connection).

Remarkably, the maximum dimension of \(\text{Gal}(M)\) is equal to the maximum dimension for the Killing vector fields of a semi-Riemannian metric on \(M\). This was expected because, on one hand, the groups \(\text{Gal}(\mathbb{R}^n)\) and orthogonal \(O(n+1, \mathbb{R})\) have the same dimension and, on the other, Killing vector fields are automatically affine for the Levi-Civita connection of the semi-Riemannian metric.

Finally, we give the following consequence on gravitational and Coriolis fields (Definition 17), interesting for its classical physical interpretation.

Proposition 22: Let \(Z \in \mathcal{Z}(M)\) be a FGO of \((M, \Omega, \langle \cdot, \cdot \rangle, \nabla)\). Then

\[
\mathcal{L}_Z \mathcal{G}(= [Z, \mathcal{G}]) = 0, \quad \mathcal{L}_Z \omega = 0, \quad \mathcal{L}_Z \text{Tor} = 0.
\]

If \(d\Omega = 0\), then the first (resp. second, third) equality is equivalent to the following fact: for any chart \((t, x^1, \ldots, x^n)\) adapted to \(Z\), the field \(\mathcal{G}\) (resp. \(\omega, \text{Tor}\)) is independent of the coordinate \(t\).

Proof: The first equality is a consequence of (9) with \(K = X = Y = Z\). From this formula one also has

\[
[Z, \nabla_X Z] = \nabla_{[Z, X]} Z. \tag{10}
\]

Then, for any spacelike vector fields \(V, W\),

\[
2 \mathcal{L}_Z \omega(V, W) = 2(Z(\omega(V, W)) - \omega([Z, V], W) - \omega(V, [Z, W])) = Z(\nabla_V Z, W) - \langle V, \nabla_W Z \rangle - \langle \nabla_{[Z, V]} Z, W \rangle + \langle [Z, V], \nabla_W Z \rangle + \langle [Z, W], \nabla_V Z \rangle + \langle V, \nabla_{[Z, W]} Z \rangle.
\]

But this expression vanishes, by using Proposition 4 [formula 3(b)] and (10). For the torsion, we can assume that \(X, Y, Z\), at any fixed point, commute and then

\[
\mathcal{L}_Z \text{Tor}(X, Y) = [Z, \nabla_X Y] - [Z, \nabla_Y X].
\]

By (9), the last two terms vanish.

Finally, the last assertion is straightforward from the expressions in coordinates. \(\square\)
3. Classical physical interpretations

Next, some definitions will suggest the classical interpretations for observers in $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$. For simplicity, we will consider the case $d\Omega = 0$ and ∇ symmetric, but the definitions can be extended formally to the general case.

Fix a $\mathcal{F}O, Z \in Z(M)$. Denote, as usual,

$$A_Z : \text{an} \Omega \to \text{an} \Omega, \quad A_Z(V) = -\nabla_V Z, \quad \forall V \in \Gamma(\text{an} \Omega),$$

and decompose $-A_Z$ in its symmetric \hat{S} and skew-symmetric $\hat{\omega}$ parts. [The sign $-$ in the definition of A_Z is a usual convention differential geometry: A_Z is then the Weingarten endomorphism for the hypersuperficies $t = \text{const}$ (see, for example, Ref. 10). Nevertheless, this sign is ruled out in the decomposition.] That is,

$$-A_Z = \hat{S} + \hat{\omega}$$

where \hat{S} is self-adjoint for $\langle \cdot, \cdot \rangle$, and $\hat{\omega}$ skew-adjoint. Denote by S, ω the corresponding fields of two-covariant associated tensors:

$$S(V, W) = \langle \hat{S}(V), W \rangle = \frac{1}{2}(\langle \nabla_V Z, W \rangle + \langle V, \nabla_W Z \rangle).$$

$$\omega(V, W) = \langle \hat{\omega}(V), W \rangle = \frac{1}{2}(\langle \nabla_V Z, W \rangle - \langle V, \nabla_W Z \rangle).$$

Tensor ω is, then, the vorticity or Coriolis field in Definition 17. The name “vorticity” means that, if Z represents the trajectories of the particles of a fluid, then ω measures how, given a fixed trajectory, the others turn around. The name “Coriolis field” appears because ω measures the “lack of inerciality” of Z due to the spinning of the observers (even though this lack of inercialiy may be intrinsic, see Remark 36). In fact, when $n = 3$ and M (or, equally, $\text{an} \Omega$) is orientable, ω can be represented by a Coriolis vector field C_ω in a standard way. Indeed, fix an orientation continuously at each fiber of $\text{an} \Omega$; the metric $\langle \cdot, \cdot \rangle$ yields a standard oriented volume element, dv, which is a skew-symmetric three-covariant tensor. Now, define C_ω by the equality $\omega(V, W) = d_U(C_\omega(V), W), \forall V, W \in \Gamma(\text{an} \Omega)$. \hat{S} (or, S) will be called the intrinsic Leibnizian part of A_Z, because of the following result.

Proposition 23: Fix $Z \in Z(M)$. The endomorphism field \hat{S} (and, thus, S) depends only on the Leibnizian structure $(M, \Omega, \langle \cdot, \cdot \rangle)$; thus, it is independent of the Galilean connection ∇.

Moreover, Z is Leibnizian if and only if $\hat{S} = 0$.

Proof: From the definition of S (recall that we assume now $\text{Tor} = 0$)

$$S(V, V) = \langle \nabla_V Z, V \rangle = (\langle [V, Z], V \rangle + \langle \nabla_Z V, V \rangle) = -\langle [Z, V], V \rangle + \frac{1}{2}Z(V, V),$$

and the first assertion holds. The last assertion is straightforward from (11), the third characterization in Proposition 4, and Remark 5(2).

Now, \hat{S} can be decomposed as

$$\hat{S} = \frac{\theta}{n} I + \sigma,$$

where I is the identity endomorphism, σ is the shear, characterized because it must be traceless, and θ is the expansion. So, θ measures how, with an observer fixed, neighboring observers go away on average, and σ is the deviations of this average. From Proposition 23, each observer γ in a FLO, Z, stands at a constant distance from any other observer \bar{y} in Z; nevertheless, depending on the Galilean connection, they may rotate when $\omega \neq 0$. Then, the gravitational field of a FLO Z
measures the forces which must be used, in order to compensate gravity and maintain a constant distance between its observers. Alternatively, Z may represent a rigid solid, and \mathcal{G} measures gravitational tensions.

Finally, fields of inertial observers will be defined. Notice that, from a classical physical viewpoint, it is natural to assume that they are FLOs without “rotations.” But, under our mathematical approach, it is also natural to assume that they are FGOs. Thus, we give two definitions.

Definition 24: Let $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$ be a Leibnizian space–time with symmetric ∇, and $Z \in \mathcal{Z}(M)$. We will say that Z is a field of inertial observers (FIO) if Z is a FLO and $\omega = 0$.

In this case, the FIO Z is proper if it is a FGO.

B. Existence of Galilean connections: Fundamental theorem

Next, we determine all the Galilean connections compatible with a fixed Leibnizian structure.

Recall that, for a semi-Riemannian metric g, all the connections which parallelize g can be computed from their torsion, Tor and Koszul’s formula (which determines the Levi-Civita connection, i.e., the unique one with $\text{Tor}=0$). The only condition for Tor is to be a two-skew-symmetric covariant, one-contravariant tensor field, $\text{Tor} \in \Lambda^2(TM, TM)$. Thus, there exists a natural bijection between the connections which parallelize g and the tensors field in $\Lambda^2(TM, TM)$.

On the contrary, formula (8) does represent an obstruction for the possible torsions associated to a Galilean connection. As a consequence, we will have to consider tensors fields in $\Lambda^2(TM, TM)$ under a restriction type (8). In addition, we will need so many new parameters as restrictions in (8). As we will see, gravitational and Coriolis fields will be these new parameters.

Our study will be carried out in two steps. In the first one (Sec. III B 1) we will see how, given a Galilean structure and fixed Z, the values of \mathcal{G}, ω and Tor fix the Galilean connection. In the second step (Sec. III B 2) we will see how, given a Leibnizian structure and fixed Z, the permitted values of \mathcal{G}, ω and Tor are in bijective correspondence with the space of all the Galilean connections.

1. Formula “à la Koszul”

Our aim is to prove formula (13), which plays a role similar to the Koszul formula in semi-Riemannian geometry. Our next result is, then, the “fundamental lemma of the Galilean geometry” (compare, for example, with Ref. 19, Vol. IV, Chap. 6). As in previous notation, put, for any Galilean connection ∇,

$$ A(X, Y) = \text{Tor}(X, Y) + [X, Y] = \nabla_X Y - \nabla_Y X, \quad \forall X, Y \in \Gamma(TM). $$

(12)

That is, A is two times the skew-symmetric part of ∇, and it depends just on its torsion. Notice that $A(Z, W) \in \Gamma(\text{an} \Omega)$, $\forall Z \in \mathcal{Z}(M)$, $\forall W \in \Gamma(\text{an} \Omega)$ and $A(W_1, W_2) \in \Gamma(\text{an} \Omega)$, $\forall W_1, W_2 \in \Gamma(\text{an} \Omega)$.

Lemma 25: Let $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$ be a Galilean space–time, and $Z \in \mathcal{Z}(M)$ a FO with gravitational field \mathcal{G} and Coriolis ω. Then, ∇ satisfies the following formula:

$$ 2 \langle P^Z(\nabla_X Y), V \rangle = X(P^Z(Y), V) + Y(P^Z(X), V) - V(P^Z(X), P^Z(Y)) + 2(\Omega(X) \Omega(Y) \langle \mathcal{G}, V \rangle
$$

$$ + \Omega(X) \omega(P^Z(Y), V) + \Omega(Y) \omega(P^Z(X), V) + \Omega(X)(\langle A(Z, P^Z(Y)), V \rangle
$$

$$ - \langle A(Z, V), P^Z(Y) \rangle - \Omega(Y)(\langle A(Z, P^Z(X)), V \rangle + \langle A(Z, V), P^Z(X) \rangle
$$

$$ + \langle A(P^Z(X), P^Z(Y)), V \rangle - \langle A(P^Z(Y), V), P^Z(X) \rangle - \langle A(P^Z(X), V), P^Z(Y) \rangle, $$

(13)

where $X, Y \in \Gamma(TM)$ and $V \in \Gamma(\text{an} \Omega)$ is any spacelike vector field.

Proof: From the cyclic identities,

$$ V(P^Z(X), P^Z(Y)) = \langle \nabla_V P^Z(X), P^Z(Y) \rangle + \langle P^Z(X), \nabla_V P^Z(Y) \rangle, $$

(14)

$$ P^Z(X)(P^Z(Y), V) = \langle \nabla_{P^Z(X)} P^Z(Y), V \rangle + \langle P^Z(Y), \nabla_{P^Z(X)} V \rangle, $$

(15)
On the other hand, using (15), compute (16) to obtain

\[\langle \nabla_{p_z(Y)} P^Z(Y) + \nabla_{p_z(Y)} P^Z(X), V \rangle = P^Z(X)(P^Z(Y), V) + P^Z(Y)(V, P^Z(X)) - V(P^Z(X), P^Z(Y)) \]

\[- \langle A(P^Z(Y), V), P^Z(X) \rangle - \langle A(P^Z(X), V), P^Z(Y) \rangle - \langle A(P^Z(Y), P^Z(Y)), V \rangle - 2 \Omega(X)(\nabla_y P^Z(Y), V). \]

On the other hand, using (1) and (12),

\[2(\nabla_y P^Z(Y), V) = 2(\nabla_{p_z(Y)} P^Z(Y), V) + 2 \Omega(X)(\nabla_y P^Z(Y), V) \]

\[= \langle \nabla_{p_z(Y)} P^Z(Y), V \rangle + \langle \nabla_{p_z(Y)} P^Z(X), V \rangle + \langle A(P^Z(X), P^Z(Y)), V \rangle \]

\[+ 2 \Omega(X)(\nabla_y P^Z(Y), V). \]

Substituting (17) in (18),

\[2(\nabla_y P^Z(Y), V) = P^Z(X)(P^Z(Y), V) + P^Z(Y)(V, P^Z(X)) - V(P^Z(X), P^Z(Y)) \]

\[- \langle A(P^Z(Y), V), P^Z(X) \rangle - \langle A(P^Z(X), V), P^Z(Y) \rangle + \langle A(P^Z(Y), P^Z(Y)), V \rangle \]

\[+ 2 \Omega(X)(\nabla_y P^Z(Y), V). \]

Substituting also, in the two first terms on the right-hand side of (19), the values of \(P^Z(X), P^Z(Y) \) by its expression (1),

\[2(\nabla_y P^Z(Y), V) = \Omega(X)(\nabla_y P^Z(Y), V) - \Omega(Y)(\nabla_y P^Z(X), V) - \Omega(Y)(\nabla_y P^Z(Y), V) \]

\[- \Omega(Y)(V, \nabla_{p_z(Y)} Z) - \Omega(Y)(V, A(Z, P^Z(X)) + \{\text{Koszul}\}, \]

where

\[\{\text{Koszul}\} = X(P^Z(Y), V) + Y(V, P^Z(X)) - V(P^Z(X), P^Z(Y)) + \langle A(P^Z(X), P^Z(Y)), V \rangle \]

\[- \langle A(P^Z(Y), V), P^Z(X) \rangle - \langle A(P^Z(X), V), P^Z(Y) \rangle. \]

But, using \(\nabla_y(\Omega(Y)Z) = \Omega(\nabla_y Y)Z + \Omega(Y)(\Omega(X)\nabla_y Z + \nabla_{p_z(Y)} Z) \), one has

\[P^Z(\nabla_y Y) = \nabla_y Y - \Omega(\nabla_y Y)Z = \nabla_y (\Omega(\nabla_y Y)Z) + \nabla_y P^Z(Y) - \Omega(\nabla_y Y)Z \]

\[= \Omega(X)\Omega(Y)G + \Omega(Y)\nabla_{p_z(Y)} Z + \nabla_y P^Z(Y). \]

Thus, substitute (20) in (21):

\[2(\nabla^2 Y, V) = 2(\nabla_y P^Z(Y), V) = 2 \Omega(X)(\Omega(Y)G + \Omega(Y)\nabla_{p_z(Y)} Z + \nabla_y P^Z(Y), V) \]

\[+ 2 \Omega(X)(\Omega(Y)G, V) + 2 \Omega(Y)(\Omega(Y)G, V) + 2 \Omega(Y)\omega(P^Z(Y), V) \]

\[+ \Omega(X)(\langle A(Z, P^Z(Y)), V \rangle - \langle A(Z, V), P^Z(Y) \rangle) + \langle A(Z, V), P^Z(X) \rangle, \]

as required. \(\square \)

Remark 26: As \(\nabla_y Y = P^Z(\nabla_y Y) + X(\Omega(Y))Z \), formula (13) permits us to reconstruct \(\nabla \) from \(\Omega, \langle \cdot, \cdot, \cdot \rangle, \) Tor, and the values of \(G, \omega \) associated to \(Z. \)
2. Natural bijection

Let us see how, for fixed FO, formula (13) determines all the Galilean connections of a Leibnizian space–time. As in previous notation, let \((i) \Lambda^2(\text{an}\Omega) \) be the vector space of all the two-covariant skew-symmetric tensors defined on spacelike vectors [that is, \(\vartheta \in \Lambda^2(\text{an}\Omega) \), if and only if, \(\vartheta: \text{an}\Omega \times \text{an}\Omega \rightarrow C^0(M) \), \(\vartheta \) is \(C^0(M) \)–bilinear and skew-symmetric] and \((ii) \Lambda^2(TM, \text{an}\Omega) \) be the vector space of all the two-covariant skew-symmetric tensors, one-contravariant spacelike valued [that is, \(\Theta \in \Lambda^2(TM, \text{an}\Omega) \), if and only if, \(\Theta: \Gamma(TM) \times \Gamma(TM) \rightarrow \Gamma(\text{an}\Omega) \), \(\Theta \) is \(C^0(M) \)–bilinear and skew-symmetric].

Theorem 27: Given a Leibnizian space–time \((M, \Omega, (\cdot, \cdot))\), let \(\mathcal{D}(\Omega, (\cdot, \cdot)) \) be the set of all its Galilean connections. For fixed FO, \(Z \), the map, \(D^Z: \mathcal{D}(\Omega, (\cdot, \cdot)) \rightarrow \Gamma(\text{an}\Omega) \times \Lambda^2(\text{an}\Omega) \times \Lambda^2(TM, \text{an}\Omega) \), given by

\[
D^Z(\nabla) = (\mathcal{G}(=_{\nabla}Z), \omega(= \frac{1}{2}\text{rot}Z), P^Z\circ\text{Tor}), \quad \forall \nabla \in \mathcal{D}(\Omega, (\cdot, \cdot)),
\]

is one-to-one and onto.

Proof: Obviously, this map is well-defined. Let us prove that it is one-to-one. By using (8) and (12)

\[
P^Z\circ\text{Tor} = A(\cdot, \cdot) - d \Omega(\cdot, \cdot)Z - [\cdot, \cdot]
\]

and

\[
D^Z(\nabla) = D^Z(\nabla) \Rightarrow \bar{\mathcal{G}} = \mathcal{G}, \quad \bar{\omega} = \omega, \quad \bar{A} = A.
\]

Thus, from formula (13),

\[
(P^Z(\nabla_X Y) - P^Z(\nabla_X Y), V) = 0, \quad \forall X, Y \in \Gamma(TM), \forall V \in \Gamma(\text{an}\Omega) \Rightarrow \nabla_X Y - \nabla_X Y = P^Z(\nabla_X Y) - P^Z(\nabla_X Y) = 0, \quad \forall X, Y \in \Gamma(TM),
\]

as required.

In order to check that \(D^Z \) is onto, fix \(\mathcal{G} \in \text{an}\Omega, \omega \in \Lambda^2(\text{an}\Omega) \) and \(\Theta \in \Lambda^2(TM, \text{an}\Omega) \). Taking into account (22), define

\[
A(X, Y) = \Theta(X, Y) + d \Omega(X, Y)Z + [X, Y], \quad \forall X, Y \in \Gamma(TM).
\]

Then

\[
\Omega(A(X, Y)) = d \Omega(X, Y) + \Omega([X, Y]) = X(\Omega(Y)) - Y(\Omega(X)),
\]

and \(A(Z, W) \in \Gamma(\text{an}\Omega), \forall W \in \Gamma(\text{an}\Omega), A(W_1, W_2) \in \Gamma(\text{an}\Omega), \forall W_1, W_2 \in \Gamma(\text{an}\Omega). \) As a consequence, there exists an unique map \(\Pi: \Gamma(TM) \times \Gamma(TM) \rightarrow \Gamma(\text{an}\Omega) \), such that

\[
2 \langle \Pi(X, Y), V \rangle, \quad \forall X, Y \in \Gamma(TM), \forall V \in \Gamma(\text{an}\Omega),
\]

satisfies formula (13) for previously fixed \(\mathcal{G}, \omega \) and \(A \). Define then

\[
\nabla_X Y = X(\Omega(Y))Z + \Pi(X, Y), \quad \forall X, Y \in \Gamma(TM).
\]

A straightforward computation shows that the so-defined \(\nabla \) is a Galilean connection, with \(D^Z(\nabla) \) equal to the initial \((\mathcal{G}, \omega, \Theta)\). \[\square \]

According to this theorem, there exists a canonical way to construct a Galilean connection from \(Z \in \mathcal{Z}(M) \), and a gravitational and Coriolis field: the unique \(\nabla \) such that \(D^Z(\nabla) = (\mathcal{G}, \omega, \Theta) \). If, additionally, the space–time satisfies \(d\Omega = 0 \), we can consider only symmetric connections, that is, as in the following.
Corollary 28: Let $(M, \Omega, \langle \cdot, \cdot \rangle)$ be a Leibnizian space–time, and fix $Z \in \mathcal{Z}(M)$. The set of all the Z-symmetric Galilean connections is mapped bijectively onto the set of all the possible gravitational $G \in \Gamma(\text{an}\Omega)$ and Coriolis $\omega \in \Lambda^2(\text{an}\Omega)$ fields.

In particular, if $d\Omega = 0$, then the set of all the symmetric Galilean connections is also mapped bijectively onto $\Gamma(\text{an}\Omega) \times \Lambda^2(\text{an}\Omega)$.

Notice also that, when $d\Omega = 0$, if nonsymmetric connections are considered, then Theorem 27 can be rewritten putting Tor instead of $PZ_\omega \text{Tor}$.

Remark 29: (1) It is well-known that the set of all the affine connections on a manifold M has a natural structure of affine space, the associated vector space being the one of all the two-covariant, one-contravariant tensors fields. As commented at the beginning of this section, if a semi-Riemannian metric g is fixed, the set of all the connections parallelizing g has a natural structure of vector space (the Levi-Civita connection would play the role of vector 0), isomorphic to the vector space of all the possible torsions, i.e., the space $\Lambda^2(TM, TM)$. Recall that $\Lambda^2(TM, TM)$ is a vector fiber bundle, with fiber of dimension $m^2(m-1)/2$. Theorem 27 shows that, for fixed Z, the space $D(\Omega, \langle \cdot, \cdot \rangle)$ admits a natural structure of vector space (the Z-symmetric connection with null gravitational and Coriolis fields would play the role of vector 0), isomorphic to the vector space $\Gamma(\text{an}\Omega) \times \Lambda^2(\text{an}\Omega) \times \Lambda^2(TM, \text{an}\Omega)$. Recall that this vector space is also a vector fiber bundle, with fiber of equal dimension $n+n(n-1)/2+n^2(n+1)/2 = m^2(m-1)/2$.

(2) Corollary 28 can be seen as an improved version of Ref. 11, Theorem 7. In fact, this result asserts that the degrees of freedom for the symmetric Galilean connections can be put in one-to-one correspondence with the set $\Lambda^2(TM)$ of all two-forms on M. Thus, we obtain not only the further splitting of such two forms in G and ω but also the more precise associated physical interpretations, which are developed in the remainder of the article.

C. Formulas for the connection, geodesics and curvature

Next, we will give explicit formulas in coordinates for the different geometric elements (Christoffel symbols, geodesics, curvature) associated to a Galilean connection. By using Lemma 25, these formulas can be given in terms of the Leibnizian structure, and the fields G, ω, Tor. For simplicity, we will assume that the connection is symmetric and, thus, $d\Omega = 0$, but it is not difficult to generalize expressions (see the computations following Remark 33).

Thus, fix $(M, \Omega, \langle \cdot, \cdot \rangle, \nabla)$ with a symmetric ∇, and a FO, $Z \in \mathcal{Z}(M)$. Let (t, x^1, \ldots, x^n) be a chart adapted to Z as in Proposition 2, and let G^k (resp. ω_{ij}) be the components of the gravitational field G (resp. Coriolis field ω) for Z. Let $(h^{kl})_{n \times n}$, be the smooth local functions obtained from the inverse of the matrix $(h_{ij} = \langle \partial_i, \partial_j \rangle)_{n \times n}$ at each point. Indices will be raised as usual, thus $\omega_i^k (= \omega_i^k) = \sum_j \omega_{ij}^k$. Theorem 30: The Christoffel symbols of ∇ in any chart adapted to $Z \in \mathcal{Z}(M)$ are

$$
\Gamma^0_{\mu \nu} = 0, \quad \Gamma^k_{00} = G^k, \quad \Gamma^k_{\mu 0} = \omega_i^k + \frac{1}{2} \sum_{l=1}^n h^{kl} \frac{\partial h_{jl}}{\partial t},
$$

$\forall \mu, \nu \in \{0, 1, \ldots, n\}, \quad \forall i, k \in \{1, \ldots, n\}$, the remainder being equal to the symbols for the hypersurfaces $t = \text{const}$ with the induced metric, i.e.,

$$
\Gamma^k_{ij} = \frac{1}{2} \sum_{l=1}^n h^{kl} \left(\frac{\partial h_{jl}}{\partial x^i} + \frac{\partial h_{jl}}{\partial x^j} - \frac{\partial h_{ij}}{\partial x^l} \right), \quad \forall i, j, k \in \{1, \ldots, n\}.
$$

As a consequence, for any freely falling observer $\gamma: I \rightarrow M$ (Definition 17), the following equations of the motion hold, putting $\gamma' = x^i \gamma$:

for all \(k \in \{1, \ldots, n\} \).

Proof: From Remark 26, one has \(\Gamma^0_{\mu\nu} = 0 \). For the remainder, just apply formula (13) with \(P^Z(\partial_t) = \partial_t \) and \(A(\partial_\mu, \partial_\nu) = 0 \), [recall that \(A(\dot{X}, \dot{Y}) = [\dot{X}, \dot{Y}] \), \(\forall X, Y \in \Gamma(TM) \), because of the symmetry of \(\nabla \).]

Notice that, if \(h_{ij} \) is independent of \(t \) (i.e., \(Z \) is a FLO, Proposition 6), the left-hand side of (23) yields the acceleration of the curve obtained as the projection of \(\gamma \) in a hypersurface \(t = \text{const} \) (acceleration computed with the metric \(\langle \cdot, \cdot \rangle \) on this hypersurface). Denote this left-hand side as \(D^h(\gamma^k)' / dt \). On the other hand, recall that \(Z \) is an affine vector field if and only if

\[\partial_t \Gamma^\mu_{\mu\nu} = 0, \]

for all \(\mu, \nu, \rho \). Thus, the following characterization of a previously defined field of observers is straightforward (see also Propositions 6 and 22).

Corollary 31: Let \((M, \Omega, \langle \cdot, \cdot \rangle, \nabla)\) be a Galilean space–time with symmetric \(\nabla \), and \(Z \in \mathcal{Z}(M) \). Then, in the domain of any chart adapted to \(Z \),

(1) \(Z \) is a FLO if and only if \(\partial_t h_{ij} = 0 \).

In this case, \(\Gamma^h = \omega_i^j \) and, for freely falling observers,

\[D^h(\gamma^k)' / dt = -G^{k\circ} \gamma - 2 \sum_i (\omega_i^k \circ \gamma) \frac{d\gamma^i}{dt}, \quad (24) \]

(2) \(Z \) is a FGO if and only if \(\partial_t h_{ij} = \partial_t \omega_{ij} = \partial_t G^k = 0 \).

In this case, (24) holds with \(G^k = G^h(x^1, \ldots, x^n), \omega_i^j = \omega_i^h(x^1, \ldots, x^n) \).

(3) \(Z \) is a FIO if and only if \(\partial_t h_{ij} = 0, \omega_{ij} = 0 \).

In this case, \(\Gamma^h = 0 \) and, for freely falling observers,

\[D^h(\gamma^k)' / dt = -G^{k\circ} \gamma. \quad (25) \]

(4) \(Z \) is a proper FIO if and only if \(\partial_t h_{ij} = \partial_t \omega_{ij} = \partial_t G^k = 0, \omega_{ij} = 0 \).

In this case, (25) holds with \(G^k = G^h(x^1, \ldots, x^n) \).

From the Christoffel symbols one can readily compute the curvature tensor \(R(\dot{X}, \dot{Y}) \) (we will follow the convention of sign \(R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} \)). As

\[\Omega(R(X,Y)Q) = 0, \quad \forall X, Y, Q \in \Gamma(M), \quad (26) \]

the operator \(R \) is spacelike-valued; moreover,

\[\langle V, R(X,Y)W \rangle = -\langle R(X,Y)V, W \rangle, \quad \forall X, Y, V, W \in \text{an}\Omega \]

[notice that (26) and (27) are also valid if \(\nabla \) is not symmetric]. Recall that, in a Galilean space–time, neither the four-covariant curvature tensor nor the scalar curvature make sense, but the Ricci tensor, \(\text{Ric} \), does make sense. For each Riemannian hypersurface \(t = \text{const} \), the symbol \(\nabla^h \) will denote the Levi-Civita connection (as well as the gradient), and the corresponding curvature and Ricci tensors (defined on spacelike vectors) will be \(R^h \), \(\text{Ric}^h \), resp. If \(R^h = 0 \), we will say that the space \(\text{an}\Omega, \langle \cdot, \cdot \rangle \) is flat. In this case, if \(Z \) is a FLO, we can assume that the spacelike coordinates are parallel, i.e., \(\Gamma^k_{ij} = 0 \) (see Proposition 35 for a general result).
Corollary 32: Given a Galilean space–time \((M,\Omega,\langle\cdot,\cdot\rangle,\nabla)\) with symmetric \(\nabla\), for any chart adapted to \(Z\in\mathcal{Z}(M)\) we have the following.

1. \(R(\partial_i,\partial_j)\partial_k = R^h(\partial_i,\partial_j)\partial_k\) and \(\text{Ric}(\partial_i,\partial_j) = \text{Ric}^h(\partial_i,\partial_j)\).

2. If \(Z\) is a FLO, \(R(\partial_i,\partial_j)\partial_k = -\nabla^h\partial_i G - \Sigma_k (\partial_i \omega^j_k + \Sigma_l \omega^l_i \omega^k_l)\partial_k\). [In particular, if \(Z\) is a FIO, \(R(\partial_i,\partial_j)\partial_k = -\nabla^h\partial_i G\).]

Moreover, \(\text{Ric}(\partial_i,\partial_j) = \text{div}^h G + \|\omega\|^2\), where \(\text{div}^h\) denotes the divergence with respect to \(\langle\cdot,\cdot\rangle\) in the corresponding hypersurface \(t=\text{const.}\), and \(\|\omega\|^2 = -\Sigma_i \omega_i^j \omega^j_i\). [In particular, if \(Z\) is a FIO, \(\text{Ric}(\partial_i,\partial_j) = \text{div}^h G\).]

3. If \(Z\) is a FLO, \(R(\partial_i,\partial_j)\partial_k = \Sigma_k (\partial_i \omega^j_k - \partial_j \omega_i^k + \Sigma_l (\Gamma^l_{ij} \omega_i^k - \Gamma^l_{jk} \omega_i^j))\partial_k\).

In particular, (a) if \(Z\) is a FIO, then \(R(\partial_i,\partial_j)\partial_k = 0\), and (b) if the space is flat, and parallel spacelike coordinates are taken, \(R(\partial_i,\partial_j)\partial_k = -\Sigma_i \partial_i \omega^j_k \partial_k\).

4. If \(Z\) is a FLO, \(R(\partial_i,\partial_j)\partial_k = \Sigma_k (\partial_i \omega^j_k - \partial_j \omega_i^k + \Sigma_l (\Gamma^l_{ij} \omega_i^k - \Gamma^l_{jk} \omega_i^j))\partial_k\).

In particular, (a) if \(Z\) is a FIO, then \(R(\partial_i,\partial_j)\partial_k = 0\), and (b) if the space is flat, and parallel spacelike coordinates are taken, \(R(\partial_i,\partial_j)\partial_k = -\Sigma_i \partial_i \omega^j_k \partial_k\).

Remark 33: Item (1) makes it natural to define the sectional curvature of a tangent plane included in an absolute space \(\pi_p \subset \text{an\Omega}_p\) as the curvature of \(\pi_p\) for the hypersurface \(T=\text{T}(p)\) endowed with the Riemannian metric \(\langle\cdot,\cdot\rangle\), i.e., \(K(\pi_p) = \langle R^h(v,w)w,v\rangle\), where \(v,w\) is any orthonormal basis of \(\pi_p\). If \(\pi_p \subset \text{T}_p M\) does not lie in the absolute space \(\text{an\Omega}_p\), we can define:

\[K(\pi_p) = \langle R(v,Z_p)Z_p,v\rangle,\]

where \(v\) is any unit vector of \(\pi_p \cap \text{an\Omega}_p\) and \(Z_p \in \pi_p\) satisfies \(\Omega(Z_p) = 1\). Thus, from a purely geometrical viewpoint, a rich “sub-Riemannian” geometry is introduced in this way, with interest on its own (compare with Ref. 20).

Alternatively, it is not difficult to study the curvature tensor by means of moving frames à la Cartan. For the sake of completeness, we sketch the structural equations. Locally, fix a field of observers \(Z\) and an orthonormal base of vector fields \(E_1,\ldots,E_n\) of \(\text{an\Omega}\), and consider the dual base \((\Omega,\varphi^1,\ldots,\varphi^n)\) of \((E_0=Z,E_1,\ldots,E_n)\), plus the one-forms \(\varphi^i_{\rho}\):

\[\varphi^i_{\rho}(X) = \varphi^i(\nabla_X E_\rho), \quad \forall i \in \{1,\ldots,n\}, \forall \rho \in \{0,1,\ldots,n\}, \forall X \in \Gamma(TM).\]

Then, a straightforward computation shows the following three properties, valid even if \(\nabla\) is not symmetric:

1. The curvature tensor

\[R(X,Y)E_\rho = \sum_{k=1}^n \nabla^k_p(X,Y)E_k\]

is univocally determined by the second structural equation:

\[\nabla^k_p = d \varphi^k_p + \sum_{l=1}^k \varphi^k_l \wedge \varphi^l_{\rho}, \quad \forall k \in \{1,\ldots,n\}, \forall \rho \in \{0,1,\ldots,n\}.\]

2. For the gravitational and Coriolis fields \(G,\omega\) of the FO, \(Z\), the one-forms \(\varphi^i_{\rho}\) satisfy

\[2P^Z \omega = P^Z G^\wedge \Omega + \sum_{k=1}^n \varphi^k_0 \wedge \varphi^k,\]

where \(G^\wedge(V) = \langle G,V\rangle\), for all \(V\in\text{an\Omega}\).

3. \(Y_i^j = -Y_j^i\) and \(\varphi^i_{\rho} = -\varphi^i_{\rho}\), for all \(i,j \in \{1,\ldots,n\}\).

Therefore, if \(\nabla\) is \(Z\)-symmetric, the connection one-forms \(\varphi^i_{\rho}\), are the unique one-forms satisfying the first structural equation:
\[2p^{Z^k}\omega = p^{Z^k}g^k \wedge \Omega + \sum_{k=1}^{n} \varphi^k_0 \wedge \varphi^k. \]

\[d\varphi^i = -\varphi^i_0 \wedge \Omega - \sum_{k=1}^{n} \varphi^i_k \wedge \varphi^k, \]

plus the skew-symmetry relations \(\varphi^i = -\varphi^i_j. \)

IV. NEWTONIAN STRUCTURES

A. Newtonian space–times

As a difference with most previous references, our definition of Newtonian space–time is independent of hypotheses at infinity, i.e., it would be locally testable.

Definition 34: A Galilean space–time \((M, \Omega, \langle \cdot, \cdot \rangle, \nabla)\) with symmetric \(\nabla\) is Newtonian if its space is flat and it admits a FIO.

In this case, the Newtonian space–time will be proper if some of its FIOs are proper.

Now, it is natural to wonder: (a) which hypotheses imply the existence of a FIO? and (b) under these hypotheses, how many FIO’s exist? In order to answer (a), we will assume for simplicity some global hypotheses, as the existence of a function absolute time \(T\).

Proposition 35: Let \((M, dT, \langle \cdot, \cdot \rangle, \nabla)\) be a Galilean space–time with \(\nabla\) symmetric and geodesically complete. Assume that each hypersurface \(T = \text{const}\) is flat and simply connected. Then we have the following.

1. There exist a FIO, \(Z\), and the Leibnizian structure \((M, dT, \langle \cdot, \cdot \rangle)\) isomorphic to the standard one \((\mathbb{R}^{n+1}, dt, \langle \cdot, \cdot \rangle_0)\) [with \(\langle \cdot, \cdot \rangle_0 = \Sigma_{i=1}^{n}(dx^i)^2\) and \((t,x^1, \ldots, x^n)\) the usual coordinates of \(\mathbb{R}^{n+1}\), being identifiable under the isomorphism \(T = t, Z = \partial_t\)].

2. For fixed FIO \(Z\) with vorticity \(\omega\), there exists a FIO (and, then, the space–time is Newtonian) if and only if there exists a space-like vector field \(A \in \Gamma(\text{an}\Omega)\) such that \(2\omega = \text{rot}A\).

Equally, under the identification with \((\mathbb{R}^{n+1}, dt, \langle \cdot, \cdot \rangle_0)\), there exists a FIO if and only if there exist \(n\) functions \(a^i: \mathbb{R}^{n+1} \to \mathbb{R}\) such that \(2\omega_j(\vec{x}) = \partial_i a_j - \partial_j a_i\).

3. If there exists a FIO, \(Z\), with vorticity \(\omega\) depending only on \(T\) (\(\partial_t \omega_{jk} = 0\)), then there exists a FIO.

Proof: Recall first that \(\Omega(\beta')\) is a constant \(c_\beta\) for any geodesic \(\beta\). Taking \(\beta\) with \(c_\beta \neq 0\), the range of \(T\) must be all \(\mathbb{R}\). By using geodesics with \(c_\beta = 0\), each hypersurface \(T = \text{const}\) must be isometric to \(\mathbb{R}^n\).

1. The flow \(\phi_t\) of \(Z\) can be defined directly as follows. Fix any geodesic \(\gamma(s)\) parametrized by \(t\), i.e., \(T \circ \gamma(s) = s, \forall s \in \mathbb{R}\). For each \(p \in M\), take the unique spacelike geodesic \(\alpha: \{0,1\} \to T^{-1}(T(p))\) connecting \(\gamma(T(p))\) with \(p\). Let \(v_s, s \in \mathbb{R}\), be the vector field along \(\gamma\) obtained by parallel transport of \(\alpha'(0)\) along \(\gamma\) from \(\gamma(T(p))\) to \(\gamma(T(p)+s)\). If \(\alpha^*_s\) is the geodesic with initial velocity \(v_s\), define \(\phi_t(p) = \alpha^*_1(1)\). It is straightforward to check that the infinitesimal generator \(Z\) of \(\phi_t\) is a FLO and, fixing an orthonormal base of the absolute space at \(t(0)\), the isomorphism with the standard Leibnizian structure is straightforward.

2. Fix the FLO \(Z\). Put \(\tilde{Z} = Z - A\), where, using the isomorphism of item (1), \(A = \sum k a^k \partial_k\) for some functions \(a^k\) on \(\mathbb{R}^n+1\). Easily, \(\text{rot}\tilde{Z}(\partial_i, \partial_j) = 2\omega_{ij} - \partial_i a^j + \partial_j a^i\), and the result follows.

3. Use item (2) with \(a_i = -\sum k \omega_{kj} a^k\).

Remark 36: (1) For all Newtonian space–times the Leibnizian structure must be locally isomorphic to the standard one on \(\mathbb{R}^n\). For the sake of simplicity, we will assume from now on that this standard Leibnizian structure underlies globally on any Newtonian space–time.

(2) From item (2) it is clear that if, for some indexes \(i, j, k\), one has \(\partial_i \omega_{jk} + \partial_j \omega_{ki} + \partial_k \omega_{ij} = 0\), \((\omega\) is not “spatially closed”) then there are no FIOs. Notice that, when \(Z\) is a FLO but not a FIO, (i) if the space–time is Newtonian (i.e., there exists a FIO), then \(\omega\) represents “inertial (Coriolis) forces,” (ii) otherwise, \(\omega\) represents “true” gravitational forces (which cannot be “gauged away”).
(3) An alternative formulation of Definition 34 is to impose the “gyroscope principle:”
\[R(X, Y)V = 0 \] whenever \(V \) is spacelike [see, for example, Ref. 13, Box 12.4, Axiom (3); and Ref. 14, Def. 1.1, Axiom 5]. In this case, Corollary 32(\(i \)) implies that the space is flat and Corollary 32(\(\bar{4} \)) plus Proposition 35(\(j \)) implies the existence of a FIO.

Next, we will focus on the question (b) at the beginning of this section. Recall first the following straightforward result.

Lemma 37: Let \((\mathbb{R}^{n+1}, dt, \langle \cdot, \cdot \rangle_0, \nabla)\) be a Newtonian space–time and fix a FIO, \(Z \in \mathcal{Z}(M) \). Consider a generic FO, \(\bar{Z} = Z + \Sigma a^i \partial_i \) for some functions \(a^i \) on \(\mathbb{R}^{n+1} \).

1. The set of all the FOs is a (n–1)-dimensional set of fields of inertial observers.
2. \(\bar{Z} \) is a FIO if and only if the \(a^i \)'s are independent of \(x \), \(a^i = a^i(t) \), and, thus,
\[\bar{G} = \mathcal{G} + (a^i)'(t) \partial_i. \]

(3) If \(Z \) and \(\bar{Z} \) are proper FIOs then (28) and (29) hold with constant derivatives \(\langle a^i \rangle' \), for all \(i \).

Therefore, if \(Z \) is a FIO, then \(\bar{Z} = Z + \Sigma a^i(t) \partial_i \) is a FIO for any \(a^i(t) \), and the FIOs have infinite dimension. If \(Z \) is proper, \(\bar{Z} \) will be proper if and only if \(a^i(t) = a_1^i t + a_0^i \) for some constants \(a_1^i, a_0^i \). And if \(Z \) and \(\bar{Z} \) are FIOs (proper or not) with the same gravitational field, then \(a^i(t) = a_0^i \) for all \(i \).

Theorem 38: Let \((\mathbb{R}^{n+1}, dt, \langle \cdot, \cdot \rangle_0, \nabla)\) be a Newtonian space–time.

1. The set of all the FIOs is an affine space of infinite dimension.
2. If the Newtonian space–time is proper, proper FIOs are a 2n-dimensional subspace.
3. For fixed FIO, \(Z \), with gravitational field \(\mathcal{G} \), the set \(FIO(\mathcal{G}) = \{ \bar{Z} \in \mathcal{Z}(M) | \bar{Z} \text{ is a FIO and } \bar{G} = \mathcal{G} \} \) is an n-dimensional subspace.

Remark 39: (1) When \(Z \) is a proper FIO, one can also put \(FIO(\mathcal{G}) = \{ \bar{Z} \in \mathcal{Z}(M) | \bar{Z} \text{ is a FIO and } [Z, \bar{Z}] = 0 \} \). In this case, \(FIO(\mathcal{G}) \) is the set of all the FOs whose observers move with constant velocity with respect to \(Z \). Of course, there are only \(n \) independent directions for such velocities. Any other proper FIO \(\bar{Z} \) measures a gravitational field \(\bar{G} = \mathcal{G} + \mathcal{G}_0 \), where \(\mathcal{G}_0 \) is parallel (“a uniform gravitational field cannot be distinguished from a uniform acceleration”).

(2) Any possible gravitational field \(\mathcal{G} \) for \(V \) fixes the \(n \)-dimensional set of fields of observers \(FIO(\mathcal{G}) \). One of such gravitational fields \(\mathcal{G}_0 \) may be privileged by some physical or mathematical reason. For example, \(\mathcal{G}_0 \) may be the unique gravitational field vanishing at infinity (this is a natural condition for Poisson’s equation) or the unique one vanishing along a concrete observer \(\gamma_0 \). (This observer can be called “the center of the Universe” following ideas of Newton himself—“the center of the Universe is not accelerated by gravitation.”) In this case, \(FIO(\mathcal{G}_0) \) is a distinguished \(n \)-dimensional set of fields of inertial observers.

(3) It is commonly accepted that “inertial reference frames” [see (4) below] can be defined only if there exist a privileged \(\mathcal{G}_0 \) which vanishes at infinity (see, for example, Ref. 21). Under our viewpoint, it is preferable to maintain our definition of FIOs and, when necessary, to speak about proper FIOs or \(FIO(\mathcal{G}_0) \) (as in the next section). Recall that, under our definition, the question whether a field of observers is inertial or not is purely local and can be determined, in principle, from Corollaries 31 and 32. In any case, those who prefer more classical names can call our inertial observers “Newtonian observers” and reserve the name “inertial” for our \(FIO(\mathcal{G}_0) \) when \(\mathcal{G}_0 \) vanishes at infinity.

(4) From our definition of FIO, we can give a natural definition of inertial reference frame (IRF), as a particular case of Galilean reference frame (see Sec. III A 1), i.e., as the choice of a
privileged gauge. Consider a Newtonian space–time, and fix any \(p \in M \). Each orthonormal base \((e_1, \ldots, e_n)\) of the absolute space \((\text{an}\Omega, \langle \cdot, \cdot \rangle_p)\) can be parallely propagated to obtain an orthonormal base of vector fields \((E_1, \ldots, E_n)\). A IRF is a base of vector fields (moving frame) \((Z, E_1, \ldots, E_n)\) where \(Z \) is a FIO and \(E_1, \ldots, E_n \in \Gamma(\text{an}\Omega) \) is a parallel orthonormal base of vector fields. The gravitational field of the IRF is, by definition, the one of \(Z\) characterizes all the IRFs with the same gauge field \(G \) if \(G \) is a proper Poissonian (resp. proper Newtonian) space–time. Consider a Newtonian space–time, and fix any privileged gauge. Notice that the knowledge of a FIO \(Z \) and its corresponding \(G \) allows one to reconstruct \(\nabla \) as a very particular case of formula (13)]. Poisson’s equation relates geometry to the “source” of the gravitational field, by connecting \(G \) to the density of mass. Units with gravitational Newton’s constant \(G=1 \) will be assumed. Recall first the following result [straightforward from (29) and Corollary 32]:

Lemma 40: For any Newtonian space–time, we have the following.

1. The spatial divergence of the gravitational field \(\text{div}^h G \) is equal for all the FIOs.

Moreover, \(\text{Ric}(Z_p, Z_p) = \text{div}^h G(p) \) for all \(Z_p \) with \(\text{dt}(Z_p) = 1 \) and, thus, \(\text{Ric} = 4 \pi p dt \otimes dt \) where \(p \) is the density of mass defined as

\[
\rho(t,x) = \text{div}^h G(t,x)/4\pi.
\]

2. If, for some FIO \(Z \), the gravitational field \(G \) is a spatial gradient, i.e., \(G = \nabla^h \Phi \) for some function \(\Phi \), then the gravitational field \(G \) of any other FIO \(Z = Z + \sum_i a_i(t) \partial_i \) is the spatial gradient \(\tilde{G} = \nabla^h \Phi \) with

\[
\tilde{\Phi}(t,x) = \Phi(t,x) + \sum_{i=1}^n (a_i)'(t)x^i + b^0(t)
\]

and \(b^0(t) \) arbitrary.

Thus, classical Newton’s gravitational law and Poisson’s equation suggest the following.

Definition 41: A Newtonian (resp. proper Newtonian) space–time \((R^{n+1}, dt, \langle \cdot, \cdot \rangle_0, \nabla)\) is Poissonian (resp. proper Poissonian) if the following two conditions hold:

1. The density of mass is non-negative, \(\rho \geq 0 \).
2. The gravitational field \(G \) of a FIO is a spatial gradient \(G = \nabla^h \Phi \), for some \(\Phi \in \mathcal{C}^2(R^{n+1}) \).

Remark 42: An alternative assumption to (ii) is to impose the conservative character of gravitational forces by means of an assumption on the curvature, say, for some \(Z \in \mathcal{Z}(M) \), \(\langle R(V, Z)Z, W \rangle = \langle R(W, Z)Z, V \rangle \) whenever \(V, W \) are spacelike [use Corollary 32; compare with Ref. 14 [Def. 1, Axiom 4], and Ref. 13, Box 12.4, Axiom (7)]. From Lemma 40, assumption (i) can also be formulated as \(\text{Ric}(v,v) \geq 0 \) for all \(v \). Recall that, in any case, our axioms avoid any type of redundancy (as, for example, those in Ref. 13, Box 12.4).

In any Poissonian space–time, denoting by \(\Delta^h \) the spacelike Laplacian, intrinsic Poisson’s equation

\[
\Delta^h \Phi = 4 \pi \rho
\]

holds. Taking coordinates adapted to some FIO \(Z \) (and spacelike parallel), it is well-known that if \(\Phi(t,x) \) is a solution of (30), then \(\Phi^*(t,x) = \Phi(t,x) + \sum_i b_i(t)x^i + b^0(t) \) is a new solution. Thus, Poisson’s equation does not determine univocally the value of \(G \) for \(Z = \partial_t \), but the value of all the
possible G’s for all the FIOs [this happens even in the proper case, where ρ is necessarily independent of t, and the solutions of (30) can be chosen independent of t]. But this is not surprising, because, in principle, (30) should not privilege any particular inertial gauge.

In order to avoid this difficulty, one assumes usually that (30) can be written in coordinates such that $Z=\bar{\partial}_t$ is not an arbitrary FIO but one in a privileged set $\text{FIO}(\mathcal{G}_0)$. The classical assumption for \mathcal{G}_0 is to assume that it vanishes at spatial infinity [thus, if such a \mathcal{G}_0 exists, then (29) implies that it is unique], and this can be always assumed if ρ has spatial compact support.

Nevertheless, when $\rho(t, \cdot)$ does not have compact support for some t, perhaps no \mathcal{G}_0 vanishes at spatial infinity. The simplest case happens for a nonempty spatially homogeneous Universe, i.e., when $\rho(t, x) = \rho_0(t)$ with $\rho_0(t) \neq 0$ [even though perhaps $\rho_0(t) = \text{const.}$]. Then, a typical solution of (30) when $n = 3$ is, in spatial spherical coordinates, $\Phi(t, x) = 2\pi \rho_0(t) r^2/3$. The corresponding gravitational field \mathcal{G}_0 is null at $r=0$, i.e., along the observer $\gamma_0(t) = (t, 0)$ (the “center of the Universe”). Thus, if one chooses such a γ_0, then a tridimensional set of fields of inertial observers $\text{FIO}(\mathcal{G}_0)$ is privileged, and \mathcal{G}_0 can be reconstructed from ρ.

ACKNOWLEDGMENTS

The authors acknowledge Professor Mariano Santander from the Universidad de Valladolid for some comments. The second-named author has been partially supported by MCyT-FEDER Grant No. BFM2001-2871-C04-01.

19 Spivak, M., A Comprehensive Introduction to Differential Geometry (Publish or Perish, Waltham, MA 1979).