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Abstract. In this paper, we propose the use of Information Theory as the basis for designing
a fitness function for Boolean circuit design using Genetic Programming. Boolean func-
tions are implemented by replicating binary multiplexers. Entropy-based measures, such as
Mutual Information and Normalized Mutual Information are investigated as tools for simi-
larity measures between the target and evolving circuit. Three fitness functions are built over
a primitive one. We show that the landscape of Normalized Mutual Information is more
amenable for being used as a fitness function than simple Mutual Information. The evolu-
tionary synthesized circuits are compared to the known optimum size. A discussion of the
potential of the Information-Theoretical approach is given.
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1. Introduction

The implementation of Boolean functions using the minimum number of
components is important for ASIC circuit designers and programmable
devices since silicon surface on a chip is a limited resource. Classic graphical
methods such as Karnaugh Maps become harder to use when the number of
variables increases, and it becomes impossible to use for a relatively small
number of variables. Tabular methods such as Quine-McCluskey, although
amenable for digital computers, have been proved to need memory in the
order of 3n. Modern minimization CAD tools, like Espresso, and hybrid
methods based on binary decision diagrams have proved very powerful for
circuit design, therefore finding near optimal solutions to complex circuits.
Such automated design tools make use of a priori knowledge that human
experts have extracted from the problem domain. Knowledge is stored and
represented in the form of axioms and laws for immediate use. For example,
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knowledge of Boolean algebra is incorporated to Espresso in the form of three
heuristics: reduce, expand, and redundant, aiming to construct the minimum
set cover. In decision diagrams-based methods, rules for graph reduction
preserving Boolean equivalence are used for minimization. For many design
domains, human knowledge encoded in this form suffices to automate the
design process. For some other areas such as logic circuit minimization,
humans have not yet derived the whole set of rules that would allow to find
the smallest circuit that implements an arbitrary Boolean function. Therefore,
computation of the smallest circuit is achieved by searching for a solution in
a combinatorial space spawned by operators of Boolean algebra.

As noted, the search space humans know (in some domains) is constructed
by a deduction process, or repetitive application of the rules of the problem
domain over an initial seed. But the search space could contain other elements
not known to humans if it is created in some other way. Evolutionary compu-
tation methods build the search space in a bottom-up fashion by combining
only some sampling elements (Thompson et al. 1999) (called individuals
of the population). Hence, solutions found in this space challenge human
designers since the deduction rules that lead to them are not common and,
in many cases, such rules are in fact unknown.

Hybrid methods combining evolutionary computation algorithms and
heuristics have proved very powerful. Nonetheless, purer forms of evolu-
tionary algorithms deserve attention since the avoidance of human assistance
is tantalizing.

In this article we use a pure form of Genetic Programming to synthesize
logic circuits using binary multiplexer(s) (“mux” or “muxes”). That is, no
knowledge is incorporated to the guiding search mechanism other than a
fitness function based on entropy. We show that the Shannon expansion of a
Boolean formula implementing a circuit is a sound basis for our evolutionary
method. We also review several possibilities from information theory domain
useful to fitness function design. The conclusions drawn here are applicable
to any entropy-based fitness function for Boolean circuit design, regardless
of the evolutionary technique in use.

The organization of this paper is the following: In Section 2, we describe
some previous related work from both hybrid and pure areas. Section 3
provides the detailed description of the problem that we wish to solve. Section
4 provides the mathematical foundations for justifying the use of multiplexers
as universal logic elements. Some basic concepts of information theory and
genetic programming are provided in Sections 5 and 6, respectively. The use
of entropy for circuit design is discussed in Section 7. With these ideas in
mind, we introduce fitness functions for evolutionary circuit design in Section
8. A set of experiments illustrating the design of logic circuits is described in
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Section 9. In Section 10, we provide some final remarks and our conclusions
and, finally, in Section 11, we briefly discuss some possible paths for future
research.

2. Previous Work

Most of the previous work in this domain has been done using Genetic
Algorithms (GAs). Genetic Programming (Koza 1992) is also included in
this review, since this technique is really an extension of GAs in which
a tree-based representation is used instead of the traditional linear binary
chromosome adopted with GAs.

Louis (1993) introduced the use of GAs for the design of combinational
circuits, and the use of a matrix array inside of which a circuit is evolved. A
layer or stage of his circuits was constrained to get its inputs only from the
previous stage. Thus, he defined a new operator called masked crossover that
exploits information unused by standard genetic operators over the matrix
representation. After Louis, several authors followed his representation, for
example, Miller et al. (1998) also evolved logic circuits in a matrix but the
position of the circuit output is also considered a variable. In their approach,
Miller et al. (1998) encode a set of complex Boolean expressions instead of
simple gate functions aiming to design more complex circuits given the set
of more powerful primitives. In principle, the approach is sound but, unfor-
tunately, its main drawback is its lack of flexibility to handle a large number
of inputs. Miller et al. (2000, 2000a), Louis and Johnson (1997), and Islas et
al. (2003) studied the combination of GAs with Case-Based Reasoning tools
that incorporate and preserve knowledge about the problem domain.

Our own previous work using GAs for circuit design (Coello Coello et
al. 1996, 1997, 2000, 2001), shows successful results when small circuits
are evolved inside the previously mentioned matrix representation. From our
research using this sort of encoding, we concluded that the matrix causes
a strong representation bias since some inputs and gates are favored by the
genetic operators in a probabilistic sense. In an attempt to deal with such a
biased representation, in more recent work, we proposed another approach
based on genetic programming and multiplexers that seems to have a more
neutral representation (Hernández Aguirre et al. 1999, 2000, 2000b).

Genetic programming (GP) is a natural alternative to genetic algorithms
for circuit synthesis since its main goal is program construction, rather than
vector optimization of the latter. Therefore, for GP, constructing a program
is similar to constructing a circuit, with either domain being defined by its
own set of terminals and functional symbols. Koza (1992) has used Genetic
Programming to design combinational circuits, but his emphasis has been
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in the generation of functional circuits (in symbolic form) rather than their
optimization. Dill et al. (1997) used GP to produce logic equations from
partial information, covering up to 98.4% of the target function. Iba et al.
(1997), have studied circuit synthesis at gate-level on FPGAs, concluding
that intrinsic (on chip) evolution is harder than extrinsic (as our approach),
because of the fine grained architecture of the FPGA. Note however, that
we have showed that it is in fact possible for evolutionary algorithms
to learn Boolean functions if we correctly estimate the so-called Vapnik-
Chervonenkis dimension of our design tool (Hernández Aguirre et al. 2000a,
2001).

To establish the niche of this paper we should consider the two main
approaches to Boolean function synthesis described in Section 1: pure
methods, and hybrid methods. Pure methods are extended with procedures to
cope with the poor scalability of evolutionary algorithms. Kalganova (2000)
proposed a two-way strategy called “bidirectional incremental evolution”, in
which circuits are evolved in top-down and bottom-up fashion. Vassilev et al.
(2000) proposed the use of predefined circuit blocks which can improve both
the convergence speed and the quality of the solutions. Although these results
are promising, a big problem remaining is defining what a good block is for
the problem in turn. Recently, Torresen (2002) proposed a scalable alternative
with limited success called “increased complexity evolution”. Here, training
vectors are partitioned, or the training set is partitioned, solving a problem in
a divide and conquer fashion.

Hybrid methods have had more success, particularly binary decision
diagram based methods. Droste (1997) used GP and two heuristics: deletion
and merging rules, to reduce directed acyclic graphs. His approach solved
the 20-multiplexer problem for the first time ever. Another important hybrid
method has been developed by Drechsler et al. (1995, 1996, 1998). This
GP system uses directed acyclic graphs for representing decision diagrams.
Two heuristics that are representative of Dreschler’s work are: sifting and
inversion.

Claude Shannon suggested the use of information entropy as a measure
of the amount of information contained within a message (Shannon 1948).
Thus, entropy tells us there is a limit in the amount of information that can
be removed from a random process without information loss. For example,
music can be (losslessly) compressed and reduced up to its entropy limit.
Further reduction is only possible at the expense of information loss (Weaver
and Shannon 1949). In a few words, entropy is a measure of disorder and it
constitutes the basis of Information Theory.

The ID3 algorithm for the construction of classifiers (based on decision
trees) probably is the best known classification algorithm among computer
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scientists that relies on entropy measures (Quinlan 1983). For ID3, an
attribute is more important for concept classification if it provides greater
“information gain” than the others.

Information Theory (IT) was early used by Hartmann et al. (1982) to
convert decision tables into decision trees. Boolean function minimization
through IT techniques has been approached by several authors (Kabakcioglu
et al. 1990; Lloris et al. 1993). Some work related to the proposal presented
in this article can be found in Luba et al. (2000, 2000a), whom address the
synthesis of logic functions using a genetic algorithm and a fitness func-
tion based on conditional entropy. Their system (called EvoDesign) works in
two phases: first, the search space is partitioned into subspaces via Shannon
expansions of the initial function. Then the GA is started in the second phase.
The authors claim that the partition of the space using entropy measures is
the basis for their success. In their domain, a fitness function based on Mutual
Information apparently worked well. Note however, that in our case such an
approach did not produce good results. Conditional entropy has also been
used by Cheushev et al. (2001) in top-down circuit minimization methods.
In fact, the formal result of Cheushev et al. (2001) indicates that a Boolean
function can be synthesized by using entropy measures, thus, providing a
sound ground for our approach.

We aim to explore the use of entropy-based fitness functions in a pure
GP framework. Since no other knowledge than entropy will be used in the
fitness function, only limited size circuits can be tested. However, as noted
before, the conclusions we draw are applicable to any evolutionary system
for Boolean function synthesis based on entropy measures.

3. Problem Statement

For the purposes of this article, let us consider a target Boolean function
T specified by its truth table. The problem of interest to us is the design
of the smallest possible logic circuit, with the minimum number of binary
multiplexers (described in Section 4), that implements the target function. The
multiplexer is the only functional unit replicated, each one being controlled
by a variable of the target function. Note that only 1s and 0s are fed into
the multiplexers (the analog of the Shannon’s expansion shown in Figure 1).
This strategy allows the implementation of the synthesized circuits by means
of pass transistor logic (Scholl et al. 2000). The design metric driving the
implementation is the number of components. Therefore, the best among a set
of circuits with the same functionality is the one with the lowest number of
components. Our goal is to find 100% functional circuits, specifying compo-
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Figure 1. Shannon expansion implemented with binary multiplexers.

nents and connections, instead of a symbolic representation of it. Thus, the
approach of this paper could be classified as “gate-level synthesis”.

Since the number of circuit components is unknown for most circuits, the
use of an stochastic method such as Genetic Programming seems appropriate.
Also, the tree-like structure of the circuits makes Genetic Programming the
most appropriate evolutionary technique.

4. Multiplexers as Universal Logic Elements

The use of binary muxes is a sound approach to circuit synthesis since
they can form a basis for Boolean functions. That is, muxes are “universal
generators”.

A binary multiplexer is a logic circuit with two inputs a and b, one output
f , and one control signal s, logically related as follows:

f = as + bs′ (1)

In other words, the output is the value a when the selector is “high”, and
b when the selector is “low”.

The Shannon expansion is the representation of a Boolean function
through the residues of a Boolean function.
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DEFINITION 1. Residue of a Boolean function: The residue of a Boolean
function f (x1, x2, . . . , xn) with respect to a variable xj is the value of the
function for a specific value of xj . It is denoted by fxj

, for xj = 1 and by fx̄j

for xj = 0. The Shannon expansion in terms of residues of the function is,

f = x̄j f |x̄j
+ xjf |xj

(2)

For mapping Boolean expansions into circuits using binary multiplexers, the
variable xj in Equation 2 takes the place of the control variable s in Equation
1. For the sake of an example consider the function f (a, b, c) = a′b′c +
a′bc′ + ab′c′.

The residue of the expansion over the variable a is:

f (a, b, c) = a′f |a=0 + af |a=1

= a′ · (b′c + bc′) + a · (b′c′)

The factor b′c+bc′ must be taken by the mux when the selector a is “low”,
and b′c′ when a is “high”. These factors could also be expanded in the same
way. The expansion of the first factor over the variable b is:

b′c + bc′ = b′(b′c + bc′)|b=0 + b(b′c + bc′)|b=1

= b′ · c + b · c′

And the expansion of the second factor over b is:

b′c′ = b′(b′c′)|b=0 + b(b′c′)|b=1

= b′ · c′ + b · 0

Since in our approach the only valid inputs to the muxes are “0” and “1”,
the variable “c” has to be fed to the circuit through a mux. This is done by the
two muxes at the bottom of the “tree”. The circuit implementing the function
of our example is shown in Figure 1.

5. Basic Concepts of Information Theory

Uncertainty and its measure provide the basis for developing ideas about
Information Theory (Cover and Thomas 1991). The most commonly used
measure of information is Shannon’s entropy.

DEFINITION 2. Entropy: The average information supplied by a set of k

symbols whose probabilities are given by {p1, p2, . . . , pk}, can be expressed
as,

H(p1, p2, . . . , pk) = −
k∑

s=1

pklog2pk (3)
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The information shared between a transmitter and a receiver at either end of
a communication channel is estimated by its Mutual Information,

MI(T ;R) = H(T ) + H(R) − H(T ,R) = H(T ) − H(T |R) (4)

The conditional entropy H(T |R) can be calculated through the joint
probability, as follows:

H(T |R) = −
n∑

i=1

n∑

j=1

p(tirj )log2
p(tirj )

p(rj )
(5)

An alternative expression of mutual information is

MI(T ;R) =
∑

t∈T

∑

r∈R

p(t, r)log2
p(t, r)

p(t)p(r)
(6)

Mutual information, Equation 4, is the difference between the marginal
entropies H(T ) + H(R), and the joint entropy H(T ,R).

We can explain it as a measure of the amount of information one random
variable contains about another random variable, thus it is the reduction in the
uncertainty of one random variable due to the knowledge of the other (Cover
and Thomas 1991).

Mutual information is not an invariant measure between random variables
because it contains the marginal entropies. Normalized Mutual Information is
a better measure of the “prediction” that one variable can do about the other
(Studholme et al. 1999):

NMI(T ;R) = H(T ) + H(R)

H(T ,R)
(7)

The joint entropy H(T ,R) is calculated as follows:

H(T ,R) = −
∑

t∈T

∑

r∈R

p(t, r)log2p(t, r) (8)

Normalized MI has been used in image registration with great success
(Maes et al. 1997).

EXAMPLE: We illustrate these concepts by computing the Mutual
Information between two Boolean vectors f and c, shown in Table 1. Variable
c is an argument of the Boolean function f (a, b, c) = a′b′c + a′bc′ + ab′c′.

We wish to estimate the description the variable c can do about variable f ,
that is, MI(f ; c).
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Table 1. Function f = a′b′c + a′bc′ + ab′c′ used to
compute MI(f;c)

a b c f = a′b′c + a′bc′
+ab′c′

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

We use Equations 4 and 5 to calculate MI(f ; c). Thus, we need the
entropy H(f ) and the conditional entropy H(f |c).

Entropy requires the discrete probabilities p(F = 0) and p(F = 1) which
we find by counting their occurrences

H(f ) = −(
5

8
log2

5

8
+ 3

8
log2

3

8
) = 0.9544

The conditional entropy, Equation 5, uses the joint probability p(fi, cj ),
which can be estimated through conditional probability, as follows: p(f, c) =
p(f )p(c|f ). Since either vector f and c is made of two symbols, the discrete
joint distribution has four entries. This is:

p(f = 0, c = 0) = p(f = 0)p(c = 0|f = 0) = 5

8
× 2

5
= 0.25

p(f = 0, c = 1) = p(f = 0)p(c = 1|f = 0) = 5

8
× 3

5
= 0.375

p(f = 1, c = 0) = p(f = 1)p(c = 0|f = 1) = 3

8
× 2

3
= 0.25

p(f = 1, c = 1) = p(f = 1)p(c = 1|f = 1) = 3

8
× 1

3
= 0.25

Now, we can compute the conditional entropy by using Equation 5. The
double summation produces four terms:

H(f |c) = −(
1

4
log2

1

2
+ 3

8
log2

3

4
+ 1

4
log2

1

2
+ 1

8
log2

1

4
)

H(f |c) = 0.9056
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Therefore, MI(f ; c) = H(f ) − H(f |c) = 0.9544 − 0.9056 = 0.0488.
In fact, for the three arguments of the example function we get MI(f ; a) =
MI(f ; b) = MI(f ; c). The normalized mutual information between either
argument and the Boolean function is NMI(f ; a) = NMI(f ; b) =
NMI(f ; c) = 1.0256. Although no function argument seems to carry more
information about the function f , we show later that the landscape of NMI
contains a region implying information sharing. This region is hard to find on
the MI landscape.

6. Genetic Programming Concepts

Genetic Programming is a variation of the genetic algorithm in which a
tree-based representation is adopted. Its main aim is to solve automatic
programming problems and symbolic regression problems (Koza 1992).
Problems such as the exponential growth of the search space even for some
very specific problem domains, and the representation or encoding of compu-
tational structures of the objective language, remained unsolved for several
years. John R. Koza (1992), used genetic algorithms to tackle the search
space problem, and S-expressions which are naturally encoded as trees, to
represent programs. The evolutionary operations applied over trees always
produce valid trees and, therefore, syntactically correct programs. One of the
earliest genetic programming systems ran in LISP, as to take advantage of the
native parser provided by this programming language. Thus, the language
interpreter “runs” the evolutionary algorithm, and at the same time is the
evaluator of the S-expressions produced by the evolutionary algorithm.

Genetic Programming evolves functions encoded as trees. We should see a
tree as the abstract semantic view of a program, that is, a parse tree. Therefore,
nodes and leaves of the tree represent non-terminal and terminal grammar
elements of the objective language. Furthermore, genetic programming has
to be initialized with a set of operators and functions that work as a basis for
the evolutionary synthesis of programs. For example,
− Arithmetic operations (e.g., +,−,×,÷)
− Mathematical functions (e.g.,sine, cosine, log, exp)
− Boolean operations (e.g., AND, OR, NOT)
− Conditionals (IF-THEN-ELSE)
− Iterators (DO-UNTIL)

These are operators and functions commonly adopted in genetic program-
ming. For the evolution of logic circuits we define a pertinent set of grammar
elements (note the relationship with Figure 1):
− Terminals= {0, 1}
− Non-terminals= {a multiplexer}
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Figure 2. Logic function specification, encoding of the circuit using lists, and the circuit.

Therefore, a circuit is represented as a tree using binary multiplexers as
node functions, and 0s and 1s for the leaves. An illustration of this kind of tree
is shown in Figure 2 (the circuit was derived using the technique described in
this article). The circuit is 100% functionally equivalent to the one derived by
Shannon expansions in Figure 1. Note that the circuits are also structurally
similar but the muxes are controlled by different variables.

The main body of the standard Genetic Programming algorithm is the
following:

Genetic Programming Algorithm
t = 0;
Pt ← initial population
Pt ← f itness(Pt )

while (stopcondition = false) {
S ← selection(Pt );
C ← crossover(S);
M ← mutation(C);
t = t + 1;
Pt ← f itness(M);

}

Several issues regarding the application of Genetic Programming as a
problem solving tool for Boolean function synthesis are discussed next.
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− Implementation language: Although the implementation language is
not relevant for the results, we chose Prolog because lists are natural
structures of this language and allow the representation of trees. The
evaluation of either circuit just requires one predicate that translates a
list into a tree.

− Initial population: In genetic programming, the size of the trees plays
an important role in the search. In our work, we adopted the following
setting for the size of the trees which was experimentally derived:
maximum tree height should not exceed half the number of variables
of the Boolean function. These trees could be required to be complete
binary trees but our strategy was to randomly create them as to have a
rich phenotypic blend in the population.

− Representation: A circuit is represented using binary trees, and trees are
encoded as Prolog lists. This representation is less flexible than directed
acyclic graphs (used in Drechsler et al. 1998) but still suitable to generate
circuits for pass transistor logic. A circuit tree is a recursive list of
triplets of the form: (mux, lef t−child, right−child). Mux is assigned
a control variable, and either child could be a subtree or a leaf. The
muxes are treated as “active high” elements, therefore the left subtree is
followed when the control is 0, and the right subtree otherwise. The tree
captures the essence of the circuit topology allowing only the children
to feed their parent node, as shown in Figure 2. The representation also
captures with no bias the requirement for the leaves of being only 0 or
1.

− Crossover operator: The exchange of genetic information between
two parent trees is accomplished by exchanging subtrees as shown
in Figure 3. Crossover points are randomly selected, therefore, node-
node, node-leaf, and leaf-leaf exchanges are allowed since they produce
correct circuits. The particular case when the root node is selected to
be exchanged with a leaf is disallowed, so that invalid circuits are never
generated.

In Figure 3, two parents exchange genetic information (subtrees
circled) and produce two children in the way used in this paper.

− Mutation operator: Mutation is a random change with very low proba-
bility of any gene of a chromosome. The mutation of a tree can alter
a mux or a leaf. If a mux is chosen then a random variable is generated
anew and placed as a new gene value. The mutation of a leaf is as simple
as the changing of a 0 to 1, and 1 to 0. The mutation of both a node and
a leaf of the tree is shown in Figure 4.

− Fitness function: The design of the fitness function using entropy
principles is explained in Section 7. Nevertheless, every fitness func-
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Figure 3. The crossover operator over trees encoding circuits.

tion used in our experiments works in two stages since the goal is
twofold: the synthesis of 100% functional circuits, and their minimiza-
tion. At stage one, genetic programming explores the search space and
builds improved solutions over partial solutions until it finds the first
100% functional circuit. The fitness function for this stage uses entropy
concepts in order to reproduce the truth table. Once the first functional
circuit appears in the population, a second fitness function is activated
for measuring the fitness of the new circuit. Thus, if a circuit is not 100%
functional its fitness value is estimated through entropy; if the circuit is
100% functional its fitness value denotes its size and smaller circuits are
preferred over larger ones. The fitness value of a 100% functional circuit
is always larger than the value of a non functional one, so that circuits
are protected from fitness conflicts.
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Figure 4. Mutation operation over a tree (two mutations are shown).

7. Entropy and Circuits

Entropy has to be carefully applied to the synthesis of Boolean functions. Let
us assume any two Boolean functions, F1 and F2, and a third F3 which is
the one’s complement of F2, then

F3 �= F2

For these complementary functions,

H(F2) = H(F3)

Also Mutual Information shows a similar behavior.

MI(F1, F2) == MI(F1, F3)

The implications for Evolutionary Computation are important since care-
less use of entropy-based measures can nullify the system’s convergence.
Assume the target Boolean function is T . Then, MI(T , F2) = MI(T , F3),
but only one of the circuits implementing F2 and F3 is close to the solution
since their Boolean functions are complementary. A fitness function based on
mutual information will reward both circuits with the same value, but one is
better than the other. Things could get worse as evolution progresses because
the mutual information increases when the circuits are closer to the solu-
tion, but in fact, two complementary circuits are then given larger rewards.
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The scenario is one in which the population is driven by two equally strong
attractors, hence convergence is never reached.

The fitness function of that scenario is as follows. Let us assume T is
the target Boolean function (must be seen as a Boolean vector), and C is the
output vector of any circuit in the population. Our fitness function is either the
maximization of mutual information or the minimization of the conditional
entropy term. This is,

badf itnessf unction#1 = MI(T ,C) = H(T ) − H(T |C) (9)

The entropy term H(T ) is constant since T is the target vector. There-
fore, instead of maximizing mutual information, the fitness function can only
minimize the conditional entropy,

badf itnessf unction#2 = H(T |C) (10)

We called bad to these entropy-based fitness functions because we were
not able to find a solution with them. Although mutual information has been
described as the “common” information shared by two random processes, the
search space is not amenable for evolutionary computation. In Figure 5 we
show this search space over mutual information for all possible combinations
with two binary strings of 8 bits. The area shown corresponds to about 1

4
([1, 150] × [1, 150]) of the whole search space of ( [1, 254] × [1, 254]) (the
values 0 and 255 were not used). Horizontal axes are decimal values of 8 bit
binary strings, and height represents mutual information.

The mutual information space, clearly full of spikes, does not favor the
area of common information. For any two equal vectors, their Mutual Infor-
mation lies on the line at 45◦ (over points {(1, 1), (2, 2), (3, 3) . . . (n, n)}).
In the next Section we continue this discussion and design fitness functions
whose landscape seems more promising for exploration.

8. Fitness Function based on Normalized Mutual Information

So far we have described the poor scenario where the search is driven by a
fitness function based on the sole mutual information. We claim that fitness
functions based on Normalized Mutual Information (NMI) should improve
the performance of the genetic programming algorithm because of the form
of the NMI landscape. This is shown in Figure 6 for two 8-bit vectors (as we
did for MI in Section 7, Figure 5). Note on the figure how the search space
becomes more regular and, more important yet, note the appearance of the
wall at 45◦ where both strings are equal.
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Figure 5. The search space of mutual information (Equation 9).

Figure 6. The search space of normalized mutual information (Equation 7).
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Figure 7. Fitness landscape of: f = (Length(T ) − Hamming(T , C)) × NMI(T , C).

We propose three new fitness functions based on Normalized Mutual
Information (Equation 7) and report experiments using the following three
fitness functions (higher fitness means better).

Let us assume a target Boolean function of m attributes T (A1, A2,

. . . , Am), and the circuit Boolean function C of the same size. In the
following, we propose variations of the basic fitness function of Equation
11, and discuss the intuitive idea of their (expected) behavior.

f itness = (Length(T ) − Hamming(T ,C)) × NMI(T ,C) (11)

We tested Equation 11 in the synthesis of several problems and the results
were quite encouraging. Thus, based on this primary equation we designed
the following fitness functions. In Figure 7 we show the fitness landscape of
Equation 11.

f itness1 =
m∑

i=1

f itness

NMI (Ai, C)
(12)

f itness2 =
m∑

i=1

f itness × NMI(Ai, C) (13)

f itness3 = (Length(T ) − Hamming(T ,C)) × (10 − H(T |C)) (14)

The function fitness, Equation 11, is driven by NMI(T,C) and adjusted by
the factor Length(T ) − Hamming(T ,C). This factor tends to zero when T
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and C are far in Hamming distance, and tends to Length(T ) when T and C

are close in Hamming distance. The effect of the term is to give the correct
rewarding of NMI to a circuit C close to T . Equation 11 is designed to remove
the convergence problems described in the previous section.

Fitness1 and Fitness2, Equations 12 and 13, combine NMI of T and C

with NMI of C and the attributes Ak of the target function. Thus, f itness1
and f itness2 look for more information available in the truth table in order
to guide the search. Fitness3 is based on conditional entropy and it uses
the mentioned factor to suppress the reproduction of undesirable trees. Since
conditional entropy has to be minimized we use the factor 10 − H(T |C) in
order to maximize fitness. Equations 10 and 12 use the conditional entropy
term. Nevertheless, only Equation 12 works fine. As a preliminary discussion
regarding the design of the fitness function, the noticeable difference is the
use of Hamming distance to guide the search towards the aforementioned
optimum wall of the search space. The Hamming distance favors the destruc-
tion of individuals on one side of the wall, and favors the other side. Thus, in
principle, there is only one attractor in the search space.

9. Experiments

In the following experiments we find and contrast the convergence of the
genetic programming system for the three fitness functions of Equations 12,
13, 14.

9.1. Experiment 1

Here we design the following (simple) Boolean function:

F(a, b, c, d) =
∑

(0, 1, 2, 3, 4, 6, 8, 9, 12) = 1

We use a population size of 300 individuals, a crossover rate (pc) of 0.35, a
mutation rate (pm) of 0.65, and a maximum of 100 generations. The optimal
solution has 6 nodes, thus we find the generation in which the first 100%
functional solution appears, and the generation number where the optimal is
found. The problem was solved 20 times for each fitness function. Table 2
shows the results of these experiments.

9.2. Experiment 2

Our second test function is:

F(a, b, c, d, e, f ) = ab + cd + ef
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Table 2. Generation number where the first 100% functional
circuit is found, and the generation where the optimum is found,
for our three proposed fitness functions

Event Gen. at Gen. at Gen. at

fitness1 fitness2 fitness3

100% functional 13 ± 5 14 ± 7 18 ± 6

Optimum solution 30 ± 7 30 ± 10 40 ± 20

Table 3. Generation number where the first 100% functional circuit is
found, and the generation where the optimum is found, for our three
proposed fitness functions

Event Gen. at Gen. at Gen. at

fitness1 fitness2 fitness3

100% functional 39 ± 12 40 ± 11 50 ± 12

Optimum Solution 160 ± 15 167 ± 15 170 ± 20

In this case, we adopted a population size of 600 individuals, pc = 0.35,
pm = 0.65, and a maximum of 200 generations. The optimal solution has 14
nodes. Each problem was solved 20 times for each fitness function. Table 3
shows the results of these experiments.

A solution found to this problem is shown in Figure 8. The evolutionary
solution is equivalent to the optimum reported by Reduced Order Binary
Decision Diagram techniques.

9.3. Experiment 3

Our third problem is related to partially specified Boolean functions
(Hernández Aguirre et al. 2000). With this experiment we address the ability
of the system to design Boolean functions with “large” numbers of arguments
and specific topology. For this, we have designed a synthetic problem where
the topology is preserved when the number of variables increases.

Boolean functions with 2k variables are implemented with (2 ∗ 2k) − 1
binary muxes if the truth table is specified as shown in Table 4.

We ran experiments for k = 2, 3, 4, thus 4,8, and 16 variables and we
contrasted these results with the best known so far for this problem (reported
in Hernández Aguirre et al. 2000). For completeness, all previous results are
reported together with the results of the new experiments in Table 5, where
we use the three fitness functions proposed before (Equations 12, 13, 14).
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Figure 8. Solution found by genetic programming to Experiment 2.

Table 4. Partially specified function of Example 3 needs
(2 ∗ 2k) − 1 muxes

A B C D F(ABCD)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0
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Table 5. Generation number where the first 100% functional circuit is found,
and the generation where the optimum is found, for the three proposed fitness
functions

k Variables Size Average Aveage Average Average

(previous) (fitness1) (fitness2) (fitness3)

2 4 7 60 60 60 60

3 8 15 200 190 195 194

4 16 31 700 740 731 748

5 32 63 2000 2150 2138 2150

All parameters are kept with no changes for similar experiments, average
is computed for 20 independent runs. In previous work we used a fitness
function based on the sole Hamming distance between the current solution
of an individual and the target solution of the truth table (Hernández Aguirre
et al. 2000). One important difference is the percentage of correct solutions
found. Previously, we reported that in 90% of the runs we found the solution
(for the case of fitness based on Hamming distance). For the three fitness
functions based on entropy we found the solution in 99% of the runs.

9.4. Experiment 4

Our fourth (and last) problem, is the synthesis of even 4-parity circuits (the
output of the circuit is 1 if the number of ones assigned to the input variables is
odd). This experiment is harder to solve because only XOR gates are used in
the optimum solution. Since our approach will need to implement XOR gates
by using muxes, or make some abstraction of the overall circuit, interesting
behaviors on the fitness functions will be observed. In this case, we adopted a
population size of 810 individuals, pc = 0.35, pm = 0.65, and a maximum of
300 generations. Each problem was solved 30 times for each fitness function.
The optimal solution has 15 nodes, which after removing similar branches
gets its final form shown in Figure 9.

For this experiment we report the number of optimum solutions found as
a percentage of trials (30). The results are shown in Table 6.

The first three columns are similar to previous experiments, the column
labeled “Hamming” indicates the use of a fitness function optimizing
Hamming distance, and the column labeled “H-NMI” indicates the use of
the fitness function described in Equation 11. Except for function Fitness3,
all fitness functions found functional circuits in all cases. It is important
to remember that Fitness3 is based on conditional entropy and Hamming
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Figure 9. Optimum solution to even 4-parity circuit problem.

Table 6. Percentage of optimum solutions found in 30 runs, for our three
proposed fitness functions

Event Fitness1 Fitness2 Fitness3 Hamming H-NMI

% opt. solutions 54.5 44.1 0.0 36.6 36.8

distance; the detailed results are: about 50% of the runs strayed from conver-
gence showing an ever increasing number of nodes. In the other 50%,
functional solutions were found but showing an erratic behavior. No circuit
with optimum fitness solution was found.

Experiments show that Fitness H-NMI is quite similar to fitness Hamming,
but Fitness2 and Fitness1 improve H-NMI and Hamming, most likely due to
the normalized mutual information measured between the variables of the
target and evolving functions.

10. Final Remarks and Conclusions

We have tested in this paper a fitness function using only conditional entropy
for circuit synthesis, with no success at all. We believe this is a clear indica-
tion of a fitness function that does not take into account entropy properties.
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Therefore, the evolutionary algorithm cannot converge because there is more
than one attractor in the search space. Figure 5 reveals an amorphous search
MI landscape with a quite weak wall at 45◦. The left handside of the wall
seems more regular than the right handside. Although it is hard to derive any
conclusions from this figure, it is clear that no attractor dominates the area
and it could explain the failure of the fitness function based on MI only.

The landscape of Normalized Mutual Information seems less chaotic and
more regular. The great advantage of a fitness function designed over NMI is
the appearance of the wall at 45◦. It is clear that the wall must appear when the
random vectors are equal; as the intersection of the vectors increases so it does
the MU. What we have shown in this paper is that, in spite of all the credit
given to MI as the “real information” shared between two random processes,
the NMI landscape is more suitable for searching than the MI landscape. In
the landscape of the fitness function of Figure 7, we can see the wall due to
equal vectors is preserved, so we believe it is part of the landscape of three
fitness functions using Equation 11.

In the first three experiments, the three fitness functions proposed in this
paper worked quite well. All of them found the optimum in most cases, thus
they are comparable to other fitness functions based on Hamming distance
(Hernández Aguirre et al. 2000). Nonetheless, Experiment 4, which is harder
since the optimum solution is implemented by only using XOR gates, tell us a
different story. Remember that Fitness1 and Fitness2 are based on NMI, and
that their design hypothesis is that some relevant information shared between
the Boolean variables of the target function and the target function itself,
could be extracted and used to guide the search. This seems to be the case of
Experiment 4, since the best results are obtained by fitness functions based
on NMI.

A final remark goes to the convergence time and quality of results for
Experiment 4 previously reported in the specialized literature. Miller et
al. (2000a), solved this problem using a genetic algorithm whose evolu-
tion is contained by the matrix representation used (called cartesian genetic
programming). They found the optimum in 15% of the runs, each run made 4
million fitness function evaluations. In our case, we only need 240,000 fitness
function evaluations, and we get the perfect fitness in 54.5% of the trials. It
is not possible to derive firm conclusions from the comparison because the
representation and the evolutionary technique of each approach is different,
but it is worth to note how our GP based approach needs less computational
resources to find perfect fitness circuits. From Tables 2 and 3 we can give
some advantage to normalized mutual information over simple mutual infor-
mation because it is less biased. Results from Table 5 and 6 could imply that
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mutual information is able to capture some relationship between the data that
the sole Hamming distance cannot convey to the population.

11. Future Work

There are two immediate lines for further research in which we are already
working. These are the following:
1. Use of entropy-based measures to estimate the complexity of a tree:

In the first three experiments of this article, we reported the generation at
which the first 100% functional solution was found. We also counted the
number of muxes in that first functional solution (not reported here), and
also the size of the best tree produced along all the evolutionary process.
Comparing the size of trees for fitness functions based and not based on
entropy, we found shorter trees when using entropy (NMI to be precise).
A detailed analysis is in process in order to explain this behavior. It is
quite important because shorter trees usually denote shorter convergence
time to the solution. Thus, our hypothesis is that entropy could improve
the measure of the complexity of a tree and that it could help to relate tree
size with target goal. So far, the experiments show that trees tend to grow
but evolution keeps their entropy low and with about the same value.
Certainly, many different trees can share the same entropy value, but if
this is low then it could mean some trees are replicating a branch with
low probability of success. Entropy could also be used to keep diversity
high. This is of major importance during the exploration phase of the
evolutionary algorithm and, therefore, deserves to be explored in more
depth.

2. Circuits with more than one output: The generation of common or
shared branches is the main issue in this type of circuits. Our initial
approach has consisted on measuring the mutual information between the
output vectors, and to relate the circuit outputs to the argument vectors of
the Boolean function. Our preliminary results are encouraging but more
work is still necessary in this direction
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